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Abstract. Self-driving cars over the last decade have achieved significant progress like driving millions of miles
without any human intervention. However, behavioral safety in applying deep-neural-network-based (DNN-
based) systems for self-driving cars could not be guaranteed. Several real-world accidents involving self-driving
cars have already happened, some of which have led to fatal collisions. In this paper, we present a novel and
automated technique for verifying steering angle safety for self-driving cars. The technique is based on deep
learning verification (DLV), which is an automated verification framework for safety of image classification
neural networks. We extend DLV by leveraging neuron coverage and slack relationship to solve the judgement
problem of predicted behaviors, and thus, to achieve verification of steering angle safety for self-driving cars.
We evaluate our technique on the NVIDIA’s end-to-end self-driving architecture, which is a crucial ingredient in
many modern self-driving cars. Experimental results show that our technique can successfully find adversarial
misclassifications (i.e., incorrect steering decisions) within given regions if they exist. Therefore, we can achieve
safety verification (if no misclassification is found for all DNN layers, in which case the network can be said to
be stable or reliable w.r.t. steering decisions) or falsification (in which case the adversarial examples can be used
to fine-tune the network).
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1. Introduction

Recent advances in Machine Learning (ML) techniques [GBC16] have led to the development of self-driving
cars. Previous experimental results show that a well-trained system of self-driving cars, using sensors like cam-
eras, radars, and LiDARs, etc., has already driven millions of miles without any human intervention [dee17].
Several major car manufacturers including Tesla, GM, Ford, BMW, and Waymo/Google are building and ac-
tively testing self-driving cars [TPJR18]. Self-driving cars are becoming widespread, and this trend is likely to
continue and intensify.
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The system for self-driving cars is trained over large training data, which is collected under different conditions
such as a wide variety of road types and a diverse set of lighting and weather conditions. Every system for self-
driving cars is expected to make good choices (to behave correctly for previously-unseen inputs) at any time like
a real driver.

The key component of a self-driving car is the perception module controlled by the underlying Deep Neural
Network (DNN) [TPJR18]. However, it has been observed that DNN-based software, including the system for
self-driving cars, can react in unexpected and incorrect ways to even slight perturbations of their inputs [SZS+14].
Those previously-unseen erroneous behaviors in DNN-driven self-driving cars can lead to dangerous conse-
quences like a fatal collision. Several such real-world cases have already been reported [Goo16, Tes18, Ube18].
This unexpected behavior is likely to result in the unsafe system, or restrict the usage of self-driving cars in safety-
critical applications [KBD+17a]. Hence, there is a pressing need for awell-studiedmethod that can provide formal
guarantees for the behavior of DNN-driven self-driving cars. Unfortunately, input-output space (i.e., all possible
combinations of inputs and outputs) is too large to explore exhaustively, as these cars adjust their behaviors based
on the environment measured by different sensors (e.g., camera, infrared obstacle detector, etc.).

One approach to enhancing the safety of self-driving cars is case-based test. For instance, Tian et al. [TPJR18]
proposed a systematic testing tool called DeepTest for automatically detecting erroneous behaviors of DNN-
driven self-driving cars that can potentially lead to fatal crashes. They leveraged nine different image transfor-
mations to automatically generate test cases, and then found thousands of erroneous steering behaviors. The
image transformations include changing brightness, changing contrast, translation, scaling, horizontal shear-
ing, rotation, blurring, fog effect, and rain effect. However, despite their remarkable progress, real-world driving
conditions involve more than just the nine transformations mentioned above. Another potential approach is
simulation-based, but recent research [KP16] has shown that fully autonomous vehicles in simulation would have
to be driven hundreds of millions of miles and sometimes hundreds of billions of miles to demonstrate their
reliability in terms of fatalities and injuries, which would have to take decades to accomplish. Therefore, although
case-based test and simulation are often used to check the performance of autonomous systems, they do not
provide sufficient guarantees. This is especially true for safety-critical areas such as autonomous driving, where
unsafe incidents are rare and difficult to characterize.

In fact, verifying DNN-driven self-driving cars is a difficult problem. In general, DNNs are large, non-linear,
and nonconvex, and verifying even some simple properties about them is an NP-complete problem [KBD+17b].
DNN verification is experimentally beyond the reach of general-purpose tools such as linear programming (LP)
solvers or existing satisfiability modulo theories (SMT) solvers [BIL+16, HKWW17, KBD+17a, PT12]. The
difficulty in proving properties about self-driving cars is caused by the judgement of predicted behaviors. The
DNN-driven self-driving cars take inputs from different sensors such as cameras, light detection and ranging
sensors (LiDAR), and IR (infrared) sensors, and output predicted behaviors such as the steering angle, braking,
speed, etc., which are needed to control the car safely under current conditions [TPJR18]. Outputs are only
predicted by well-trained weights and biases and given activation functions, which makes it difficult to judge
predicted behaviors. Moreover, it is challenging to make manual reasoning for such a system as it essentially
involves recreating the logic of a human driver.

Past efforts at verifying properties of self-driving cars have got into trouble. Shalev-Shwartz et al. [SSS17]
suggested the notion of who is responsible for an accident in a non-deterministic setting. However, there is no
automatic formal verification tool that can be used to prove these properties. Roohi et al. [RKW+18] specified
the most fundamental policies defined in [SSS17] and presented a simple formal model for self-driving cars.
After some simplifications, the safety of this system has already been proven manually, but no automatic formal
verification tool supports its dynamics. What’s more, they are not aware of any automatic formal verification tool
that can be used to specify these properties.

In this paper, we propose a novel and automated technique for the formal verification of steering angle safety
for self-driving cars. The technique is based on Deep Learning Verification (DLV) [HKWW17], which is an auto-
mated verification tool for safety of image classification neural networks. DLV is based on search for adversarial
misclassifications within a given region. That is, if an adversarial example is found, the network is said to be
unsafe for the image classification task; and otherwise, if no misclassifications are found for all DNN layers, the
network is proved to be safe. However, DLV cannot be used directly to the verification problem of steering angle
safety for self-driving cars, since correct steering angles are within a certain range of values rather than a concrete
single value like in the case of image classification. To solve this problem, we use neuron coverage [PCYJ17] and
slack relationships (introduced in this paper) to turn the steering angle judgement problem into a classification
problem.
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Fig. 1. The DNN for self-driving cars that takes input from camera, and outputs the steering angle

Neuron coverage is the ratio of unique neurons that get activated for a given input image to the total number
of neurons in a DNN. Correlation with positive statistical significance suggests that the steering angle increases
with increasing neuron coverage and vice versa [TPJR18]. We use the statistical significance between the neuron
coverage and the steering angle, and then introduce the neuron coverage as a reference for the same steering
angles. The slack relationships are based on the relationship we define for a safe DNN-driven self-driving cars,
i.e., the steering angle should not change significantly for minimal changes of the input image. If the neuron
coverage of the perturbed image is equal to that of the original image, and the predicted steering angle of the
perturbed image satisfies two slack relationships, then the perturbed image and the original image are considered
to have the same class. As long as any one of these three conditions is not satisfied, the class of the perturbed
image is considered to be different from that of the original image. After transforming the verification problem
into a classification problem, DLV is used to tackle the verification of steering angle safety for self-driving cars.
We name this technique as SDLV (namely “Steering with DLV”).

We evaluate SDLV on the well-trained NVIDIA’s end-to-end system for self-driving cars [BTD+16], which
has been widely used as the perception module and end-to-end controller for self-driving cars such as Rambo
model [Ram17]. The system’s network contains 9 layers: a normalization layer, 5 convolutional layers, and 3
fully connected layers. This system takes inputs from a single front-facing center camera and outputs steering
commands. Recent results have demonstrated that a well-trained end-to-end system can predict the steering angle
with an accuracy close to that of a human driver [BTD+16]. However, the adversarial examples reported by our
experiments have shown that such systems (networks) can be instable and result in dangerous behaviors.

Our primary contributions can be summarized as follows. First, we present SDLV, which, to the best of our
knowledge, is the first automated verification tool for steering angle safety for self-driving cars; second, we have
found adversarial examples of the NVIDIA’s self-driving car network by using SDLV, proving the instability of
this network.

The rest of the paper is organized as follows.We begin with some background onDNNs and the abstract DLV
algorithm in Sect. 2. We then describe the verification method of the steering angle by SDLV in Sect. 3, followed
by experiments in Sect. 4.We then introduce the end-to-end system background in Sect. 4.1. Experimental results
and the comparison are described in Sects. 4.2 and 4.3, respectively. In Sect. 5, some discussions on SDLV are
proposed. Related work is discussed in Sect. 6, and we conclude the paper in Sect. 7.

2. Background

2.1. Deep neural networks for self-driving cars

The key component of a self-driving car is the perception module controlled by the underlying DNN [TPJR18].
The DNN for self-driving cars takes input from different sensors including cameras, light detection and ranging
sensor (LiDAR), and IR (infrared) sensors that measure the environment and outputs the steering angle, braking,
speed, etc., which are needed to maneuver the car safely under current conditions. In this paper, we focus on the
camera input and the steering angle output as shown in Fig. 1.
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A typical feed-forward DNN consists of multiple processing layers, which are stacked together to extract
different representations of the input [BLPL06]. Each layer of the DNN increasingly abstracts the input, e.g.,
from raw pixels to semantic concepts. For example, the first few layers of a self-driving car DNN extract low-level
features such as edges and directions, the deeper layers identify objects like stop signs and other cars, and the
final layer outputs the steering decision (e.g., turning left or right).

Each layer of the DNN is composed of a sequence of individual computing units called neurons. The neurons
in adjacent layers are connected through edges. Each edge has a corresponding weight, which is determined by
performing a training phase of theDNNbased on the labeled training data.Most existingDNNs are trained with
gradient descent based on backpropagation [DERW98]. After being trained, a DNN can be used for prediction
without changing the weights. For example, a DNN for self-driving car can be used to predict the steering angle
based on input images without any further changes to the weights. The value of each neuron is determined by
calculating a linear combination of neurons values from the previous layer, and then by applying a non-linear
activation function [GBC16]. After that, each neuron sends the value to the subsequent neurons as shown in
Fig. 1. In this paper, we use Rectified Linear Unit (ReLU) [NH10] as the main activation function.When a ReLU
activation function acts on a neuron, the neuron’s value is calculated as the maximum of the linear combination
of neurons from the previous layer and 0.

2.2. Deep learning verification (DLV)

Several researchprojects attempted to build custom tools for formally verifying safety properties ofDNNs, such as
Reluplex and DLV.We refer interested reader to [Sur18] for a detailed survey. Unfortunately, the current state-of-
the-artDNNs, such asDNN-driven self-driving cars, typically contain at leastmulti-millionhiddenneurons,while
most verification tools work only with small networks (up to a few thousands hidden neurons) [Sur18]. Huang et
al. [HKWW17] proposed a novel framework for automated verification of safety of classification decisions made
byDNNs, and implementeda software tool calledDLV.DLVisbasedon search for anadversarialmisclassification
within a given region, and is applicable to large-scale networks. In this paper, we extend DLV to verify steering
angle safety for self-driving cars. Thus,we review, in this subsection, themain notions and techniques implemented
in DLV for safety verification of a neural network w.r.t. image classification (i.e., classification decision). We refer
interested reader to [HKWW17] for the details.

In [HKWW17], safety is defined for an individual classification decision and is parameterized by the class of
manipulations and a neighbouring region around a given image. A vector space of images (points) is denotedRnk .
Each layer Lk of a network is associated with an nk -dimensional vector spaceDLk

⊆ R
nk , where each dimension

corresponds to a neuron. The mapping φk : DLk−1 → DLk
denotes an activation function, and ϕk : DLk

→ DLk−1

in the opposite direction is used to represent how a manipulated activation of layer Lk affects the activations of
layer Lk−1. The network is fed an input x (point in DL0 ) from its input layer, which is then propagated through
the layers by successive application of the activation functions. An activation for point x in layer k is the value of
the corresponding function, denoted as αx ,k � φk (φk−1(. . . φ1(x ))) ∈ DLk

for k ∈ {1, . . . ,n}, where αx ,0 � x .
The definition of safety in [HKWW17] for a classification decision (abbreviated safety at a point) is similar

to [FFF15]. The same point is that a network f̂ approximating human capability f is said to be not robust at an
input x if there exists a point y in the region η � {z ∈ DL0 | ‖z − x‖ ≤ d} such that f̂ (x ) �� f̂ (y). The point
y closest to x is known as an adversarial example. The difference is that [HKWW17] works layer by layer, and
therefore will identify such a region ηk , a subspace of DLk

, at each layer Lk , for k ∈ {0, . . . ,n}, and successively
refine the regions through the deeper layers.

Assumption 1 For each activation αx ,k of point x in layer Lk , the distance between αx ,k and activations contained
in the region ηk (αx ,k ) is very small so that the human observer classifies them into the same class.

Definition 1 (General Safety) Let ηk (αx ,k ) be a region in layerLk of a neural networkN such that αx ,k ∈ ηk (αx ,k ).
We say that N is safe for input x and region ηk (αx ,k ), written as N , ηk |� x , if for all activations αy,k in ηk (αx ,k )
we have αy,n � αx ,n .

A manipulation is an operator that simulates image perturbations such as bad angles, scratches or weather
conditions, and its type can be determined by the application environment or the user. But under such manipu-
lations, the classification decisions in a region of images close to it should be invariant.
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Fig. 2. DLV refinement framework

For simplicity, DLV works with operators δk : DLk
→ DLk

over the activations in the vector space of
layer k, and consider the Euclidean (L2) and Manhattan (L1) norms to measure the distance between an
input and its perturbation through δk . More specifically, applying a manipulation δk (αx ,k ) to an activation
αx ,k will result in another activation such that the values of some or all dimensions are changed. DLV there-
fore represent a manipulation as a hyper-rectangle, defined for two activations αx ,k and αy,k of layer Lk by
rec(αx ,k , αy,k ) � ×p∈Pk

[min{αx ,k (p), αy,k (p)},max {αx ,k (p), αy,k (p)}] [HKWW17]. For an activation αx ,k and a
set � of manipulations, we denote by the polyhedron rec(�,αx ,k ) � ∪δ∈�rec(αx ,k , δk (αx ,k )) after applying some
manipulation in � on αx ,k . Let �k be the set of all possible manipulations for layer Lk .

Definition 2 (Safety w.r.t. Manipulations) Given a neural network N , an input x and a set �k of manipulations,
we say that N is safe for input x with respect to the region ηk and manipulations �k , written as N , ηk ,�k |� x ,
if a complete tree is generated starting from αx ,k , each node of the tree has the same classification as αx ,k and
the limited number of hyper-rectangles generated by adjacent nodes can cover the region ηk (αx ,k ).

Definition 3 The functions {η0, η1, . . . , ηn } and {ψ1, . . . , ψn } mapping activations to regions are such that

1. ηk (αx ,k ) ⊆ DLk
, for k � 0, . . . ,n,

2. αx ,k ∈ ηk (αx ,k ), for k � 0, . . . ,n, and
3. ηk−1(αx ,k−1) ∈ ψηk (αx ,k ) for all k � 1, . . . ,n.

The main verification idea of DLV is that for a given neural networkN and an input x , a series of continuous
manipulations �k are performed on αx ,k from some layer Lk , and the region ηk (αx ,k ) containing αx ,k is divided
into a limited number of small regions that could cover the region ηk (αx ,k ). For each small region, if there is no
adversarial example found in all small regions, then refinement operations in layer Lk+1 are performed. Under the
condition that �k is minimal, it can be ensured that the region ηk (αx ,k ) satisfies N , ηk |� x in layer Lk . Minimal
operator here means that no point is different from the classification of αx ,k and a manipulation δk (αx ,k ) can
be found in a small region. The refinement framework is shown in Fig. 2. The arrows represent the implication
relations between the safety notions and are labelled with conditions if needed. The goal of the refinements is to
find a chain of implications to justify N , η0 |� x .

Definition 4 Amanipulation δk−1(αy,k−1) is refinable in layer Lk if there exist activations and valid manipulations
in layer Lk can express δk−1(αy,k−1). Here, a valid manipulation δk means that a corresponding activation αy,k

is an interior point of the polyhedron which includes all hyper-rectangles of αy,k . Given a neural network N and
an input x, the manipulations �k are a refinement by layer of ηk−1,�k−1 and ηk if, for all αy,k−1 ∈ ηk−1(αz ,k−1),
all its valid manipulations δk−1(αy,k−1) are refinable in layer Lk .

After developing theoretical analyses (only a part of which was reviewed above), Huang et al. [HKWW17]
summarized the following search-based recursive verification procedure. The method is parameterized by the
region ηk around a given point and a family of manipulations �k . DLV can start from any layer and propagate
analysis into deeper layers. The vector norm to identify the region can be specified by the user and varies by layer.
When DLV finds an adversarial example, it will terminate and map it back to the input layer.

Algorithm 1 Given a neural network N and an input x , recursively perform the following steps, starting from
some layer l ≥ 0. Let k ≥ l be the current layer under consideration.

1. determine a region ηk such that if k > l then ηk and ηk−1 satisfy Definition 3;
2. determine a manipulation set �k such that if k > l then �k is a refinement by layer of ηk−1,�k−1 and �k

according to Definition 4;
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Fig. 3. Automobile images (classified correctly) and their perturbed images (classified wrongly)

Fig. 4. False positives

3. verify whether N , ηk ,�k |� x ,

(a) if N , ηk ,�k |� x then

i. report that N is safe at x with respect to ηk (αx ,k ) and �k , and

ii. continue to layer k + 1;

(b) if N , ηk ,�k �|� x , then report an adversarial example.

Algorithm 1 was implemented by using satisfiability modulo theory (SMT) solvers. The SMT problem is a
decision problem for logical formulas with respect to combinations of background theories expressed in classical
first-order logic with equality.

3. The verification method

The DLV described in Sect. 2.2 is an efficient method for automated verification of safety of image classification
decisions. However, this method cannot be used to verify DNNs for self-driving cars.

When an image classification network maps an image to a class label, each classification decision (i.e., true or
false) is unique. For example, Fig. 3 gives adversarial perturbations of automobile images that are misclassified as
a frog, cat or airplane by a highly trained state-of-the-art network. Moreover, each image classification decision
is easy to judge by comparing with the predetermined manual label. Mapping an image to a steering command in
a self-driving car network is similar to the mapping of the image classification network, but the correct steering
command for self-driving car is not unique. For example, DeepTest [dee17] reports two false positives in Fig. 4. In
each group of images, the steering angle (blue arrow) in the left original image is a manual label, and the steering
angle (red arrow) in the right synthetic image is erroneous behavior incorrectly reported by DeepTest [dee17], but
the self-driving model’s steering command output is indeed safe.

The theory of DLV requires that the original output and the perturbed output must have the same class.
However, the perturbed steering angle output can be different from the original output because the safe steering
angle command is not unique. Therefore, the DNNs for self-driving cars cannot be verified directly by DLV.

If we want to verify the safety of the steering angle for self-driving cars, we must face and solve the problem of
judging the steering angle command predicted by the self-driving model. However, the judgment of the steering
angle is complicated and difficult. This is because, under the same road condition, different human drivers take
different steering angle commands. Fortunately, we can find that these different and safe steering angles fluctuate
in a continuous range. Moreover, the steering angle is an important issue related to life. DNN-based software
used for self-driving cars often exhibits incorrect/unexpected turning behaviors, which may lead to dangerous
consequences such as fatal collisions [dee17]. Several such real-world cases have already been reported [Goo16,
Tes18, Ube18].
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A naı̈ve approach is then to express steering label using some mathematical expressions, which is possible
because a correct steering decision is within a certain range. However, it is challenging to specify the correct
behaviors for a self-driving car system as it essentially involves recreating the logic of a human driver. To solve
this problem, we leverage neuron coverage [PCYJ17] and introduce slack relationships between car behaviors. In
this paper, we compare whether the neuron coverage of the original image and the perturbed image are equal, and
check whether the predicted steering angles of the perturbed image satisfies two slack conditions. If the neuron
coverage of the perturbed image is equal to that of the original image, and the predicted steering angle of the
perturbed image satisfies two slack conditions, then the perturbed image is considered to be classified the same
as the original image. As long as any one of these three conditions is not satisfied, the perturbed image and the
original image have different classes.

3.1. Neuron coverage

Neuron coverage was initially proposed by Pei et al. [PCYJ17] for guided differential testing of multiple similar
DNNs. It is defined as the ratio of unique neurons that get activated for given an input image to the total number
of neurons in a DNN:

Neuron Coverage � |Activated Neurons|
|Total Neurons| (1)

An individual neuron is considered activated if the neuron’s output is larger than a predetermined neuron ac-
tivation threshold. To better compare with the method in [TPJR18], we also use 0.2 as the neuron activation
threshold for our experiments presented in Sects. 4.2 and 4.3.

Neurons may produce different types of output values depending on the type of the corresponding layer,
i.e., single and multiple values organized in a multi-dimensional array. Since neurons in the fully connected
layer output a single scalar value, their output can be directly compared to the neuron activation threshold. By
contrast, neurons in convolutional layers outputmultidimensional featuremaps as each neuron outputs the result
of applying a convolutional kernel across the input space [SHR15].

In order to obtain neuron coverage formulas of fully connected layers and convolutional layers, we first define
a function h as:

h(x , y) �
{
1 x>y
0 x≤y

(2)

For a DNN N , we use Pk to denote the set of neurons in layer Lk , and nk � |Pk | is the number of neurons
(dimensions) in layer Lk . For neuron p ∈ Pk , the value of its activation on input x is denoted αx ,k (p). We use d
to denote the neuron activation threshold (i.e., d = 0.2) and NC to denote the neuron coverage. We write A for
the set of the layer index k of all fully connected layers. For an input x , the neuron coverage formula for fully
connected layers is defined as:

NC (x ) �

∑
k∈A

∑
p∈Pk

h(αx ,k (p), d )
∑
k∈A

nk
(3)

We write B for the set of the layer index k of all convolutional layers. Assuming that the convolutional layer
Lk produces Mk feature maps from the previous layer Lk−1, the set of neurons for a any feature map m ∈ Mk

is denoted Pk ,m , and the number of neurons is denoted nk ,m � ∣∣Pk ,m

∣∣. For an input x , the neuron coverage
formula for convolutional layers is defined as:

NC (x ) �

∑
k∈B

∑
m∈Mk

h(

∑

p∈Pk ,m

αx ,k (p)

nk ,m
, d )

∑
k∈B

Mk
(4)

Tian et al. [TPJR18] analyzed the neuron coverage for a steering direction (left/right) and a steering angle
separately. As steering angle is a continuous variable, they checked spearman rank correlation [Spe04] between
neuron coverage and steering angle.
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Table 1. Relation between neuron coverage and the steering angle

Model Steering angle Steering direction Steering direction
Spearman correlation Wilcoxon test Effect size (Cohen’s d))

End to end − 0.25(∗∗∗)1 left(+ve)<right(-ve)(∗∗∗) Large
1 ∗∗∗ indicates statistical significance with p value < 2.2 × 10−16.

This is a non-parametric measure to compute monotonic association between the two variables [HK11].
Correlation with positive statistical significance suggests that the steering angle increases with increasing neuron
coverage and vice versa [TPJR18]. Their experimental results indicate that Spearman correlations for all three
models [Cha16, Ram16, Epo16] are statistically significant. We want to use the statistical characteristic between
the neuron coverage and the DNN for self-driving cars to incorporate the neuron coverage into the reference of
the same steering angle. In this paper, we evaluate SDLV on the NVIDIA’s end-to-end system for self-driving
cars, so we also conduct statistical investigations on this end-to-end model. We randomly intercept 3000 input
images from the test dataset and study the correlation between the neuron coverage and the predicted output
steering angle, and obtain table 1. Table 1 shows that the Spearman correlation about the end-to-end model is
statistically significant, and the model shows a negative correlation. This result shows that the neuron coverage
changes with the changes in output steering angles. At the same time, we use the Wilcoxon nonparametric test
to measure the association between neuron coverage and steering direction. The results of the two rightmost
columns in table 1 confirm that the neuron coverage changes with the steering direction is statistically significant.
These results show that the neuron coverage changes significantly for different input-output pairs. Therefore, we
use the same neuron coverage as a reference for the same steering angle.

3.2. Slack relationships

Slack relationship 1. The key insight is that even though it is hard to specify the correct behavior of a self-driving
car for every operated image, one can define metamorphic relations [TYCY98] between the car’s behaviors across
the input image and operated image. For instance, the steering angle of autonomous vehicles should not change
significantly for input images with minor changes (i.e. adversarial disturbances). Formally, we use α̂x ,n to denote
the steering angle of manual label and αx ,n to denote the predicted steering angle for the input image x . The
operated image y is generated by applying somemanipulations� to some activations of the input image x , and its
corresponding predicted steering angle is denoted by αy,n . Then, one may define a simple metamorphic relation
αx ,n = αy,n . If we have α̂x ,n � αx ,n , then ideal metamorphic relation is α̂x ,n � αy,n .

However, there is usually no single correct steering angle for a given image, that is, a car can safely tolerate
small variations. Therefore, there is a trade-off between defining themetamorphic relations very tightly such as the
one described above (may result in a large number of false positives) and making the relations more permissive
(may lead to many false negatives). In this paper, we strike a balance between these two extremes using the
metamorphic relations defined below.

To minimize false positives, we relax our metamorphic relations and allow variations within the error ranges
of the original input images. We observe that the set of outputs predicted by a DNN model for the original
images, say {αx1,n , αx2,n , · · · , αxm ,n }, in practice, results in a small but non-trivial number of errors w.r.t. their
respective manual labels ({α̂x1,n , α̂x2,n , · · · , α̂xm ,n }). Such errors are usually measured using Root Mean Squared
Error (RMSE), where

RMSE0 �
√√√√ 1

n

n∑
i�1

(α̂xi ,n − αxi ,n )2 (5)

Based on this property, we redefine a new metamorphic relation as:∣∣α̂x ,n − αy,n

∣∣ ≤ μRMSE0 (6)

The above equation assumes that the errors produced by a model for the perturbed images as input should be
within a range of μ times the RMSE0 produced by the original image set. Here, μ is a configurable parameter
that allows us to strike a balance between the false positives and false negatives.RMSE0 is a parameter calculated
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from a set of predicted outputs obtained by a trained neural network (our analysis target), which does not affect
our verification results.

However, not all behaviors that satisfy the first slack relationship Eq. (6) can be correct, as the correct steering
angle can safely tolerate small variations. Therefore, we take another different route and introduce the following
slack relationship 2.

Slack relationship 2. We only consider minor perturbations where the correct operated output αy,n should not
deviate too much from the corresponding input image manual label α̂x ,n . In general, the deflection amplitude of
the left and right sides of the steering angle can be set to 25 degree, which is scaled by 1/25(0.04) and mapped to
[−1, 1]. Therefore, we further use a filter criteria, defined as follows:∣∣α̂x ,n − αy,n

∣∣ ≤ 0.04ξ (7)

where ξ is also a configurable parameter which allows us to strike a balance between the false positives and false
negatives.

3.3. Verification

Since there is a positive (or negative) statistical correlation between neuron coverage and steering angle, we regard
the equal neuron coverage as a necessary condition for the same type of steering angle. However, it is too rough
to use only the equal neuron coverage to deal with the steering angle classification problem, so we also analyze
the steering angle based on a set of manual labels and a single manual label. According to the defined relations,
the steering angle for a self-driving car should not change significantly for the same input image with minimal
changes. On the one hand, the RMSE computed from a set of manual labels constrains the steering angle after
disturbance (that is, introduces the first relaxation condition) to balance false positives and false negatives. On the
other hand, by constraining a single manual label, it is intended to compensate the possible deviation produced by
comparing with a set of manual labels. Therefore, we summarize the above theoretical analyses as a search-based
recursive verification procedure given below. Before presenting the verification method, we give the following
definition.

Definition 5 Let NC (x ) and NC (y) be neuron coverage of an input x and the operated image y , respectively. We
say that x and y have the same class, i.e. αx ,n � αy,n , if NC (x ) � NC (y), Eqs. (6), and (7) are satisfied.

We say the neural network N is safe for the input x , if the input x and all the operated image y on � have the
same classification during the search process. Here, we extend the DLV theory to a theory of verification of the
steering angle safety for self-driving cars.

Algorithm 2 Given a neural network N for self-driving cars and an input x , perform the following steps recursively.
Let k ≥ l ≥ 0 be the current layer under consideration.

1. determine the configurable parameters μ and ξ in Eq. (6) and (7);
2. determine a region ηk such that if k > l then ηk and ηk−1 satisfy Definition 3;
3. determine a manipulation set �k such that if k > l then �k is a refinement by layer of ηk−1,�k−1 and �k

according to Definition 4;
4. determine that the input x and the operated image δ(x ) have the same class for all δ ∈ �k if x and δ(x ) satisfy

Definition 5. This step converts the steering angle prediction problem for self-driving cars into a problem that can
be classified like an image classification network;

5. verify whether N , ηk ,�k |� x ,

(a) if N , ηk ,�k |� x then

i. report that N is safe at x with respect to ηk (αx ,k ) and �k , and

ii. continue to layer k + 1;

(b) if N , ηk ,�k �|� x , then report an adversarial example.
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Fig. 5. The network architecture of the end-to-end system for self-driving cars

Our work focuses on verifying the local robustness of the predicted steering angle output in neural networks
for self-driving cars. In the verification process, for any given input, the trained neural network can get a steering
angle output. Then SDLV starts the operation from a certain layer of the neural network to determine whether
the predicted steering angle after the operation is consistent with the original predicted steering angle. If no
adversarial examples are found for all layers, the neural network can achieve safety verification of the steering
angle. If an adversarial example is found, the neural network is unsafe about this input.

4. Experiments

4.1. Background

In this paper, we evaluate our technique on the NVIDIA’s end-to-end system for self-driving cars [BTD+16]. An
end-to-end system for self-driving cars means that the inputs of the system (such as sensors) directly determine
the behaviors of the cars (such as throttle, brake, and direction, etc). In this paper, we focus on the camera input
and the steering angle output.

The network architecture of the end-to-end system for self-driving cars is shown inFig. 5. The network consists
of 9 layers, including a normalization layer, 5 convolutional layers and 3 fully connected layers. Unlike a fully
connected layer where the neurons are connected to all of the neurons in the next layer and multiple connections
among different neurons share the different weight, the neurons in a convolution layer are connected only to some
of the neurons in the next layer and multiple connections among different neurons share the same weight. Here,
we use strided convolutions in the first three convolutional layers with a 2× 2 stride and a 5× 5 kernel size and a
non-strided convolution with a 3×3 kernel size in the last two convolutional layers.With five convolutional layers
and three fully connected layers, the output control value can be obtained, which is the steering angle command.

4.2. Experimental results

We implement in Python our proposed approach on the top of DLV [Hua], and name the approach as SDLV
(Steering with DLV). The SMT solver we used is Z3 [Z319], which has Python APIs. The neural network of the
end-to-end system for self-driving cars is built from a widely used neural networks library Keras [Ker19] with a
deep learning package Theano [BTD+16] as its backend. Our experiments are conducted on a desktop computer
with 3.2 GHz Intel Core i7 CPU and 32 GB memory.

In [HKWW17], there are two search methods for DLV to verify the safety of image classification networks:
DLV on single-path search for the Euclidean norm (L2) and on multi-path search for the L1 and L2 norms. If the
checking of points in the region partitioned according to the feature is conducted by following a pre-specified
sequential order, this way is called the single-path search. If the checking of points in the region partitioned
according to the feature is conducted by exhaustively searching all possible orders, this way is called the multi-
path search. In this paper, we also use SDLV on single-path search for the Euclidean norm (L2) and onmulti-path
search for theL1 andL2 norms to verify the steering angle safety of the end-to-end system for self-driving cars. The
network of the end-to-end system uses two representative types of layers: fully connected layers and convolutional
layers.
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Fig. 6. An illustrative example of modified steering predictions

Given a neural network for self-driving cars, for an input image x , we assume that the output is the correct
steering angle. In the following figures, we use the green arrow to denote the correct steering angle. If the predicted
steering angle of the operated image does not satisfy the condition in Definition 5, we determine that the steering
angle is wrong, which is denoted by a red arrow in the following figures.

The setting values of the parameters μ and ξ do affect the verification results. The two values we chose is
the same as the optimal values reported by DeepTest experiments. In addition, even if the setting of these two
values is not really reasonable, in our method, neuron coverage can correct unreasonable results to ensure the
correctness of results.

The single-path search. We work with a large size neural network of the end-to-end system for self-driving cars,
which we train for more than 6 hours on the driving dataset [Sul]. The inputs to the network are images of size
135× 240 with three channels. The trained network has more than a million real-valued parameters and includes
convolutional layers, flatten layers, dropout layers, fully-connected layers, and a arctan layer. The images are
preprocessed to make the value of each pixel within the interval [0, 1].

Given an input image x , we start with layer k � 1 and the parameter is set to be at most 150 dimensions
(there are 1824 dimensions in layer L1). All ηk and �k for k ≥ 2 are computed according to the simple heuristic
mentioned in Algorithm 1 and satisfy Definitions 3 and 4. For the region η0(αx ,0), the activation value for each
selected dimension (within [−1, 1]) is allowed to change. The set �0 includes manipulations that can change
the activation value for a subset of the 150 dimensions, by incrementing or decrementing the value for each
dimension by 1. The experimental results show that for most of the examples we can find a class change within
100 dimensional changes in layer L1, by comparing the number of pixels that have changed (some of them can
have less than 20 dimensional changes).

As an illustration of the degree of perturbations that we are investigating, we consider the images in Fig. 6
that correspond to the parameter (μ2, ξ ) set to (2, 2.5), (5, 4), (8, 6), (10, 7), (12, 8) respectively, for layer k = 1.
The image (a) is the original image. The images (b)−(d ) are obtained by mapping back from the first hidden layer
and represent a corresponding point close to the boundary of the corresponding region. In this paper, we set the
parameters μ

2
> 4 and ξ > 6 to satisfy the condition that the amplitude change between the steering angle after

disturbance and the original steering angle about a given input does not exceed 6 degree. This is because when the
change of the steering angle amplitude exceeds 6 degree, there is a high possibility that a traffic accident will occur.
According to the parameters set above, the relation N , η1,�1 |� x holds for the images (b) − (d ) in Fig. 6, but
fails for the last two implying that the images are false steering decisions. Larger number of selected dimensions
implies larger region to which we apply manipulations, and, more importantly, suggests a more dramatic change
to the knowledge represented by the activations when moving to the boundary of the region.

In Fig. 7 we also give two pairs of original (predicted correctly) and perturbed (predicted wrongly) images.
The image on the left is reported as being unsafe for the first layer with 27 dimensional changes (0.0148% of
the 1824 dimensions of layer L1). The one on the right is reported as being unsafe for the first layer with 111
dimensional changes (0.06% of the 1824 dimensions of layer L1).
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Fig. 7. Adversarial examples for the end-to-end network for self-driving cars trained on the driving dataset by single-path search

Fig. 8. Cannot find an adversarial example for the right image for 300 dimensions, by single-path search

However, images in Fig. 8 are reported as being safe for 300 dimensional changes of layer L1. It appears that
more complex manipulations, involving more dimensions, are needed in this case to cause a steering decision
change.

The multi-path search. The image (c) in Fig. 9 presents the result of a multi-path search on the original input
image (a). The image (a)’s steering prediction (approx. 27 min to manipulate) is 2.57 degree (confidence 0.00078)
changed into 0.23 degree (see the image (c)), with an L1 distance of 420 and L2 distance of 11.225. The image (b)
is the result of the single-path search obtained from the image (a). Comparing the image (b) and the image (c),
it is easy to see that the steering prediction’s change of image (b) is larger than that of the image (c). Therefore,
in this case, multi-path search is not as effective as single-path search. Since the multi-path search searches over
many different paths, the time it takes to find an adversarial example is longer than the single-path search. This
point is also mentioned in [HKWW17]. However, if a more optimized method is proposed in path selection on
the multi-path search, its efficiency may be improved, which is also our future work. The fourth image (d) is the
difference between the original image (a) and perturbed image (c), and it is not hard to see that the degree of
disturbance in the image is very small.

4.3. Comparison

In this section, we compare SDLV with DeepTest [TPJR18], the only (to the best of our knowledge) existing
approach to automatically detecting erroneous steering angles of DNN-driven self-driving cars. DeepTest applies
image transformations to automatically generate test cases for detecting erroneous steering behaviors, whereas
SDLV explores, in a formal manner, a proportion of dimensions in the feature space in the input or hidden layers.

Fig. 9. An adversarial example for the end-to-end network for self-driving cars trained on the driving dataset by multi-path search
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Table 2. DeepTest versus SDLV (on a single path search)

DeepTest for guided search SDLV
(dim � 50) (dim � 150) (dim � 300)

L1 25731 10246.25 16531 38359.6
L2 159.6 97.08 112.55 199.66
% 19% 37% 52% 73%

Table 3. SDLV based on different parameters (on a single path search)

SDLV(dim � 150)
μ2 � 4, ξ � 4 μ2 � 6, ξ � 6 μ2 � 4, ξ � 5

L1 12162.47 17609.93 14964.22
L2 97.14 116 104.07
% 63% 42% 57%

Although SDLV on multi-path search can search for an adversarial example that has a smaller distance from
the original input than SDLVon single-path search andDeepTest, in terms of the time taken to find an adversarial
example, SDLV on multi-path search may take longer than SDLV on single-path and DeepTest, since it searches
over many different paths. It means that the multi-path search method puts a burden on the computer and makes
batch processing difficult. Therefore, when comparing batches, we choose the single-path method and Deeptest
for comparison. However, SDLV’s single-path and multi-path methods are just different in the starting point of
the search. From a theoretical point of view, it will not bring any impact.

Table 2 gives a comparison of robustness evaluation of DeepTest and SDLV on the driving dataset. From the
experimental results in [TPJR18], we observed that setting the input parameter λ to 5 is appropriate because it can
balance false positives and false negatives, and can test more adversarial examples. Hence, we use 5 as the input
parameter λ for DeepTest, and 5 as the configurable parametersμ2 (Here,μ2 is equivalent to λ in [TPJR18].) and
ξ for SDLV, and then select a single path search for the first hidden layer. We change the maximum dimension
(denoted by dim) according to the values {50, 150, 300}. SDLVmanipulates fewer than the maximum dimension
on each input image, and then returns an adversarial example if found. When the search reaches the maximal
number of dimension, SDLV reports failure and returns the last perturbed example.

The test set size is 100 images selected randomly. Three statistics are collected as shown in table 2. Statistics
include the average L1 distance and the average L2 distance between an input image and the returned perturbed
image, and the success rate of finding adversary examples. For the case when the success rates are very high, i.e.,
19% for DeepTest with λ = 5, and 73% for SDLV with dim � 300, DeepTest has smaller average distances than
SDLV on both L1 and L2 distances. When dim � 50 or 150, SDLV has smaller average distances than DeepTest
on both L1 and L2 distances.

A smaller distance leading to a misclassification may result in a lower rate of transferability [PMG+16],
meaning that a misclassification can be harder to witness on another model trained on the same (or a small
subset of) dataset [HKWW17]. In fact, DeepTest performs image transformation on the entire input image, while
SDLV only operates on some dimensions that may cause misclassification according to the network topology.
Therefore, the average L1 and L2 distances of DeepTest are larger than that of SDLV with dim � 50 or 150.
However, when the dimension increases, such as dim � 300, SDLV has an advantage over DeepTest.

In order to explore more comprehensive effect of parameter selections on the experimental results, we ran-
domly select 100 images (different from selected images in Table 2) again and add experiments with different
parameters on SDLV.We select the intermediate value 150 in table 2 as the dim, and obtain table 3. When we use
4 as the configurable parameters μ

2 and ξ for SDLV, the success rate of finding adversary examples is 63% higher
than that of the other two groups (42% and 57%) and the same dim situation in table 2 (52%), but the average
L1 and L2 distances are the smallest among the four groups. Since the parameter values decrease, the criteria
for judging the steering angle classification are stricter, and it is easier and faster to find adversarial examples.
Conversely, when the parameter values increases, the criteria for judging the steering angle classification are more
relaxed, and it is necessary to search for higher dimensions to find adversarial examples, so the average L1 and
L2 distances become larger and the success rate decreases. Although more stringent judgement conditions will
increase the success rate, it should be noted that the probability of false positives in actual operations will also
increase.
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Table 4. The impact of each condition on the search for adversarial examples
Condition The success rate of finding adversarial examples (%)
Neuron coverage 29
Slack relationship 1 43
Slack relationship 2 47
Slack relationship 1 and 2 51

5. Discussions

1.What is the relationship between the variation of neuron coverage and slack relationships?Whyneuron coverage
is important, and if dropped, how would it affect the results? Why are not Eq. (6) (the first slack relationship
defined based on the metamorphic relation) and Eq. (7) (the second slack relationship) sufficient for verification?

In order to illustrate the relationship between neuron coverage and slack relationships, we performed a single
conditional constraint experiment on the 100 images involved in table 2 to obtain table 4.We use the intermediate
value 150 in table 2 as dim, and 5 as the configurable parameters μ2 and ξ for SDLV. From the success rate in
table 4, it can be seen that among the three conditions, neuron coverage is the most relaxed condition, and slack
relationship 2 is the most stringent condition. Under the same conditions, the success rate for slack relationship
1&2 in table 4 (51%) is lower than that (52%) in table 2, which indicates that the neuron coverage plays a certain
role in the judgement of the steering angle. In the three conditions, the neuron coverage is not sensitive to small
disturbances. However, when the parameters of slack relationship 1 and 2 are selected too loose (for example, the
two parameters in table 3 are both set to 6), the success rate can still be kept it at 42%, which indicates that the
neuron coverage rate canplay a supplementary role. If neuron coverage is dropped, someadversarial examplesmay
bemissed and false negative exampleswill be reported.AlthoughEqs. (6) and (7) balance the adversarial examples
of false positives and false negatives, in experiments we found that permissive slack relationships occasionally
miss real adversarial examples in the search process, and false negative examples are reported. In order to make
up for the lack of slack relationships, we supplement them with neuron coverage as a reference for a safe steering
angle, the sensitive changes in neuron coverage will lead us to discover real adversarial examples in time.

2. Is the reported adversarial example always a true positive guaranteed by the algorithm? In other words,
how often the reported example turned out to be not an adversary?

When improper selection of parameters makes slack relationships too strict or too relaxed, some cases of false
positives or false negatives will appear in the experiment. However, when calculating the success rate of finding
adversarial examples, we found three domain experts to artificially identify the returned adversarial examples
in the experimental data. Only when opinions of three domain experts agree, we identify it as an adversarial
example.

3. What is the performance number for SDLV vis-a-vis DeepTest. How long does it take to generate an
adversary example? How much hit we observed when the dimension is increased? (Ref. table 2)

It takes about 5–25 min for SDLV to generate an adversarial example for an input. Regarding the memory,
the computer we use is 32G memory, and the memory usage at runtime is 20.2% (6.3G)–20.4% (6.4G). In the
comparative experiment in Sect. 4.3, we randomly selected 100 images as inputs. When the dimensions were 50,
150, and 300, we obtained 37, 52, and 73 adversarial examples respectively.However, only 19 adversarial examples
among them were found by DeepTest. Therefore, the success rate of SDLV for finding adversarial examples is
greater than that of DeepTest. On the other hand, a smaller L1 or L2 distance (leading to an adversarial example)
may result in a lower rate of transferability, meaning that an adversarial example can be harder to witness on the
neural network model trained on the same (or a small subset of) dataset. Although DeepTest performs image
transformation on the entire input images, and SDLV operates only in certain dimensions, it is clear from the
data in table 2 that when the dimension increases to 300, the average L1 distance and the average L2 distance
obtained by SDLV is larger than DeepTest, that is, there are higher transferability (SDLV performs better than
DeepTest).

4. What is the scalability and applicability of SDLV? In reality, there will be billions of images. Would we be
applying perturbation on all images?

SDLV does not operate on all images. Because SDLV focuses on the robustness of the neural network interior
to perturbations rather than the large number of inputs. For any input, the operation is started from a certain
layer inside the neural network. We use neuron coverage and slack relationships to analyze the predicted output
after the operation. Since different inputs activate different neurons in the neural network, the robustness of the
neural network can be verified by looking for multiple inputs that activate different parts of neurons.
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6. Related work

Anearlyunconventional test approach forneural networkswasproposed in [PCYJ17],whichused thenewconcept
of neuron coverage to systematically test DL systems and automatically identify erroneous behaviors without
manual labels. In [TPJR18], the authors proposed a systematic testing tool called DeepTest for automatically
detecting erroneous behaviors of DNN-driven self-driving cars that can potentially lead to fatal crashes. They
leveraged image transformations to simulate different real-world phenomena like camera lens distortions, object
movements, different weather conditions, etc., and then checked how robust the self-driving DNNs are to those
changes. Image transformations include changing brightness, changing contrast, translation, scaling, horizontal
shearing, rotation, blurring, fog effect, and rain effect. The combination of transformations, which is guided
by neuron coverage, generate test inputs that maximize the numbers of activated neurons. The authors found
thousands of erroneous behaviors under test cases, many of which lead to potentially fatal crashes. In [ZZZ+18],
the authors proposed DeepRoad, an unsupervised learning framework to synthesize realistic driving scenes to
test inconsistent behaviors of DNN-based autonomous driving systems, and validate online input images to
improve the system robustness. Unlike DeepTest, DeepRoad could automatically synthesize a large number of
diverse driving scenes without using image transformation rules (such as zooming, cutting, and rotating). They
used DeepRoad to detect thousands of inconsistent behaviors on three real-world Udacity autonomous driving
models, and effectively verify input images to potentially enhance the robustness of the system.

The authors of [PZA17] proposed a novel approach for verifying the safety of lane change maneuvers, using
formalized traffic rules according to the Vienna Convention on Road Traffic. A safe free space is derived by
making direct use of traffic rules, and they showed that the ego vehicle is located within this space at any time
during the lane change. When a collision occurs, if the self-driving vehicle has respected the traffic rules at all
times, they believed that another traffic participant must have violated the rules and should be responsible. They
assumed that following vehicles in the target lane only have to maintain a safe distance during the lane change of
the ego vehicle once the lattermerged into the target lane. They further assumed that following vehicles potentially
fully accelerate up to some threshold over the maximum allowed velocity, so it is not possible to change lanes in
dense traffic with their approach [NKS19].

There aremethods relied on formal and deterministic fundamentals can provide guarantees based on imposed
requirements. These methods include reachable sets [PKA19, SHE+17, AD14], runtime verification [KCDK15]
andmetric-basedmethods [FSA17], including theResponsibility-SensitiveSafety (RSS)model [SSS17]. In [PKA19],
the authors proposed a safety framework that can use formal methods to deal with uncertainty measurements
and future behaviors of traffic participants as well as disturbances acting on the ego vehicle, thereby dynamically
verifying the safety of each planned trajectory. In [SHE+17], the authors proposed a framework that guides the
development process of such a holistic online verification method for an autonomous driving software stack.
However, this method had limitations in implementation, especially when facing dynamic scenes. An approach
for formally verifying the safety of automated vehicles was proposed in [AD14]. The verification is performed
by predicting the set of all possible occupancies of the automated vehicle and other traffic participants on the
road. However, specific emergencymaneuvers for all other situations cannot be completely stored. In [KCDK15],
the authors developed an efficient runtime monitoring algorithm, EgMon, that eagerly checks for violations of
desired properties written in future-bounded propositional metric temporal logic. In [FSA17], the authors pre-
sented a conceptual framework by means of a metamodel to define a component for safety monitoring - a Safety
Supervisor - as an instantiation of the metamodel. In [SSS17], the authors proposed a formal model that covers
all the important ingredients of self-driving car: sense, plan and act. The formal model shows how safety and
scalability are pieced together into an autonomous vehicles program that society can accept and is scalable in the
sense of supporting millions of cars driving anywhere in the developed countries. On the safety front, they intro-
duced a model called RSS, which formalizes an interpretation of Duty of Care from tort law. RSS is a rigorous
mathematical model that formalizes the laws that apply to self-driving cars. Moreover, they described a design
of system that adheres to our safety assurance requirements and is scalable to millions of cars. However, some of
the approaches are tailored to a specific software (e.g., a certain trajectory planner) and cannot be bundled with
other software components or approaches [SEBD20].
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To the best of our knowledge, SDLV is the first formal tool that can automatically verify steering angle safety
of self-driving cars.

7. Conclusion and future work

In this paper, we presented SDLV, an automated verification tool for steering angle safety for self-driving cars.We
leveraged neuron coverage and slack relationships to transform a judgement problem of predicted behaviors into
an image classification problem, which can then be handled by DLV. Our case study on NVIDIA’s architecture
for self-driving cars shows the possible instability of its trained neural network.

Regarding future work, we would like to enhance the scalability of SDLV. Specifically, we will explore better
predicted behaviors analysis for the safety verification of steering angle by taking other realistic factors such as
braking, accelerated speed, and possibly traffic regulations etc., into account. In SDLV on the multi-path search,
we will explore more optimized method in path selection to improve its effect. In addition, we would like to
provide better interpretability by exploring the relationship between disturbance and steering angle, which we
believe is an interesting and challenging work.
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[SHE+17] Schürmann B, Hess D, Eilbrecht J, Stursberg O, Köster F, Althoff M (2017) Ensuring drivability of planned motions using

formal methods. In: 20th IEEE international conference on intelligent transportation systems, ITSC 2017, Yokohama, Japan,
October 16–19, 2017, pp 1–8

[SHR15] Rishi K, Samer H, Chris R (2015) Using convolutional neural networks for image recognition. Technical report, 2015
[Spe04] Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 72C101
[SSS17] Shalev-Shwartz S, Shammah S, Shashua A (2017) On a formal model of safe and scalable self-driving cars. CoRR,

arXiv:1708.06374
[Sul] SullyChen. Driving dataset
[Sur18] Safety and trustworthiness of deep neural networks: a survey. CoRR, arXiv:1812.08342, 2018. Withdrawn
[SZS+14] SzegedyC, ZarembaW, Sutskever I, Bruna J, ErhanD,Goodfellow IJ, FergusR (2014) Intriguing properties of neural networks.

In: 2nd international conference on learning representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, conference
track proceedings

[Tes18] Tesla says vehicle in deadly crash was on autopilot (2018)
[TPJR18] Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: automated testing of deep-neural-network-driven autonomous cars. In: Proceed-

ings of the 40th international conference on software engineering, ICSE 2018, Gothenburg, Sweden, May 27–June 03, 2018,
pp 303–314

[TYCY98] Cheung SC, Chen TY, Yiu SM (1998) Metamorphic testing: a new approach for generating next test cases. Technical report,
technical reportHKUST-CS98-01,Department of Computer Science,HongKongUniversity of Science andTechnology,Hong
Kong

[Ube18] Fatal car crash involving a self-driving uber shows there are major flaws in the software, hardware, and testing procedures
involving autonomous vehicles (2018)

[Z319] Z3 (2019). http://rise4fun.com/z3
[ZZZ+18] Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and input validation

framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE international conference on automated
software engineering, ASE 2018, Montpellier, France, September 3–7, 2018, pp 132–142

Received 10 September 2020
Accepted in revised form 30 January 2021 by Zhiming Liu, Xiaoping Chen, Ji Wang and Jim Woodcock

http://arxiv.org/abs/1702.01135
https://keras.io
http://arxiv.org/abs/1602.02697
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
http://arxiv.org/abs/1806.08810
http://arxiv.org/abs/2005.07740
http://arxiv.org/abs/1708.06374
http://arxiv.org/abs/1812.08342
http://rise4fun.com/z3

	SDLV: verification of steering angle safety for self-driving cars
	Abstract
	1 Introduction
	2 Background
	2.1 Deep neural networks for self-driving cars
	2.2 Deep learning verification (DLV)

	3 The verification method
	3.1 Neuron coverage
	3.2 Slack relationships
	3.3 Verification

	4 Experiments
	4.1 Background
	4.2 Experimental results
	4.3 Comparison

	5 Discussions
	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References




