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Abstract. AI-Enabled Cyber-Physical Systems (AI-enabled CPS), have recently
demonstrated great application potential and become the subject of intense re-
search. In such systems, AI controllers can monitor and control the behaviors
of mechanical systems in real time, thanks to the “intelligence” of AI in han-
dling various complex situations. Since such systems are usually deployed un-
der safety-critical scenarios, building reliable AI-enabled CPS is of importance.
Currently, this research faces many challenges, for example, the state-of-the-art
testing methods and tools may be ineffective. Besides, difficulty in fault localiza-
tion and lack of enhancement approach also pose great challenges to the quality
assurance of such systems.
This paper summarizes our work in recent years, including a benchmark set, a
falsification framework and some insights towards building reliable AI-enabled
CPS. First, we constructed a benchmark set including 9 subject CPS collected
from 7 industrial domains. Also, we conducted a comprehensive evaluation to the
reliability and performance of these subject CPS. Then, we proposed a coverage-
guided falsification framework FalsifAI, which fully utilizes 8 time-aware cov-
erage criteria to guide the search of violation cases to the given specification. The
experimental results demonstrate the effectiveness of FalsifAI. Finally, this pa-
per gives some insights into building reliable AI-enabled CPS, aiming to raise
more deep thinking and inspire works on this research.
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1 Introduction

AI-Enabled Cyber-Physical Systems (AI-enabled CPS) refer to the combinations of
mechanical systems and AI controllers, in which AI controllers monitor and control the
behaviors of mechanical systems in real time, according to the system states and ex-
ternal environments. Compared with classical CPS controllers, AI controllers are more
“intelligent” when facing various complex situations. Certainly, AI controllers also have
inherent drawbacks, such as their complexity and unaccountable decision logic. In prac-
tice, AI-enabled CPS are always deployed under safety-critical scenarios to perform
complex control tasks, which raise the risk and probability of catastrophic accidents.
Hence, quality assurance of AI-enabled CPS is of critical importance.

Currently, building reliable AI-enabled CPS faces many challenges. First, the state-
of-the-art testing techniques and tools may be ineffective in finding violation cases to
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Fig. 1. AI-enabled CPS.
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Fig. 2. Research route of building reliable AI-enabled CPS.

the given specifications. Falsification is a widely-applied testing method for quality as-
surance in CPS community, with the goal of seeking for an input signal that violates the
given properties. In doing this, robustness provided by quantitative semantics of prop-
erties will be minimized until it turns negative, acting as a guidance of falsification.
However, such guidance is mostly black-box, which makes the exploration blinded and
blocks the understanding to the temporal internal behaviors of AI components. Sec-
ond, how to diagnose and localize the faults of a violation case is also a burning issue.
Specifically, identifying whether a control decision made by AI controller is correct or
not remains to be studied, due to the lack of oracle for both system behaviors and con-
trol decisions. Besides, revealing the root causes for an erroneous decision is also a big
challenge. Third, leveraging the diagnoses of violation cases to enhance the quality of
AI-enabled CPS needs to be further explored.

Fig. 2 illustrates the flow of my research. Aiming at the above-mentioned problems,
first, we created the first benchmark of AI-enabled CPS, including 9 subject CPS col-
lected from 7 industrial fields, as well as systematic analysis to the dependability and
performance of these AI-enabled CPS [4]. Then, we proposed a falsification framework
FalsifAI, using 8 time-aware neuron coverage criteria as guidance [7]. The experi-
mental result demonstrated the effectiveness of FalsifAI. Further, this paper offers
some insights towards building reliable AI-enabled CPS.

2 An AI-Enabled CPS Benchmark

Considering the fact that there exist few benchmarks available for us to better solve
the above-mentioned challenges, we created the first publicly accessible benchmark set
with AI controllers trained by the state-of-the-art DRL algorithms [4]. The AI-enabled
CPS in our benchmark set all follow the model in Fig. 1. This model Mc is composed
of a physical plant and an AI controller C. Mc takes input signal u and produces output
signal Mc(u) if the whole system is viewed as a black box. The plant is a system whose
dynamics are given by a black-box function M, while AI controller C with the inputs
y(t) and u(t) outputs a control command c(t).

To obtain the overall understanding on the dependability and performance of AI-
enabled CPS, we systematically evaluate these subject CPS including the evaluation and
the falsification of some essential properties. We also explored the possibility of com-
bining AI and classical controllers. Experimental results exhibited the great prospects of
AI controllers, which also exposed some deficiencies of the current testing techniques.
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3 A Coverage-Guided Falsification Framework

As mentioned in Sec. 1, classic falsification guided by robustness value is mostly black-
box, which ignores the exploration of the inner behaviors of CPS with AI controllers. As
an early attempt, we first studied the CPS with deep neural network (DNN) controllers
and proposed a coverage-guided falsification framework FalsifAI with 8 time-aware
coverage criteria.

3.1 Time-Aware Coverage Criteria

To capture the inner behaviors of DNN controllers and more thoroughly test such sys-
tems, we utilized and extended the concept neuron coverage [3]. If the output of a single
neuron is greater than the set threshold, we say this neuron is covered. The more neu-
rons are covered, the more diverse behaviors a DNN may act out. Notably, unlike the
DNNs used as image classifiers, DNN controllers output time-series control decisions
during simulation and operation. Hence, we considered the time domain features of
DNN controllers and proposed 8 time-aware coverage criteria. Taking Positive Differ-
ential Neuron Coverage (PDNC) in our work as an example: if the activation value of a
neuron increases by more than a threshold h within an interval I , we say this neuron is
covered.

3.2 Two Loop Falsification Framework
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Fig. 3. Effectiveness of
FalsifAI.

The workflow of FalsifAI is composed of two loops, explo-
ration and exploitation. The outer loop performs exploration
by generating test cases which can increase our proposed cov-
erage criteria, with an aim of exploring more different tempo-
ral behaviors. The inner loop focuses on exploitation, for the
sake of finding violation cases near the test cases generated by
exploration. This loop is based on classic falsification, which
minimizes the robustness given by quantitative robust seman-
tics. Fig. 3 illustrates the falsification success rate (out of 30)
of FalsifAI on 6 CPS models, compared with two state-of-
the-art falsification tools, namely Breach (Br) and S-Taliro (St), as well as a spatial-
coverage guided approach Fal Inp. FalsifAI significantly outperforms Br&St and has
a performance close to or better than Fal Inp.

4 Insights on Building Reliable AI-enabled CPS

In this section, we briefly introduce current challenges not yet explored as well as our
insights on how to solve them.

Fault localization. Fault localization plays an important role in CPS quality assur-
ance. Bartocci et al. [1] proposed an approach to debug CPS models constructed by
Simulink/Stateflow, by analyzing the given STL specification. As for AI-enabled CPS,
this topic is still an untouched area. Mining useful patterns and hidden information from
AI controller’s states may be promising to tackle this problem.
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Enhancement approach. For CPS with classical controller, engineers can analyze the
modules with design flaws and redesign them according to control theory. However,
unfortunately there is a lack of reliable and effective enhancement methods for AI-
enabled CPS. Considering its data-driven design paradigm, neural network repair and
ensemble learning are hopeful to enhance the reliability of such systems.

5 Related Work

In terms of benchmark, the annual competition ARCH-COMP [2] in CPS domain pro-
vides a series of CPS benchmarks. However, these benchmarks are either simple or do
not contain AI components. There are also some work regarding quality assurance of
AI-enabled CPS. [5] is a typical work of verification of such systems, which obtains
reachable sets by reachability analysis. [6] attempts to falsify such systems using a
gradient-based search method.

6 Conclusion and Future Work

This paper introduces our latest work about quality assurance of AI-enabled CPS, in-
cluding a benchmark set, a coverage-guided falsification framework and some insights
towards building reliable AI-enabled CPS. In the future, we will focus on fault local-
ization and enhancement of such systems. We hope that this research can inspire more
attempts to build reliable AI-enabled CPS. Moreover, we hope that industry applica-
tions directly related to this research, such as self-driving, will benefit from this work
and in return, promotes the realization of Industry 4.0.
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1. Bartocci, E., Ferrère, T., Manjunath, N., Ničković, D.: Localizing faults in simulink/stateflow
models with stl. In: HSCC’18. pp. 197–206 (2018)

2. Ernst, G., Arcaini, P., Bennani, I., Chandratre, A., Donzé, A., Fainekos, G., Frehse, G.,
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