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ABSTRACT

In AI-enabled CPSs, DNNs are used as controllers for the physical
system. Despite their advantages, DNN controllers can produce
wrong control decisions, which can lead to safety risks for the
system. Once wrong behaviors are detected, the DNN controller
should be fixed. DNN repair is a technique that allows to perform
this fine-grained improvement. However, state-of-the-art DNN re-
pair techniques require ground-truth labels to guide the repair. For
AI-enabled CPSs, these are not available, as it is not possible to
assess whether a specific control decision is correct. Nevertheless,
it is possible to assess whether the DNN controller leads to wrong
behaviors of the controlled system by considering system-level
requirements. In this paper, following this observation, we propose
a novel DNN repair approach that is guided by system-level speci-
fications. The approach takes in input a system-level specification,
some tests violating the specification, and some faulty DNNweights.
The approach searches for alternative weight values with the goal
of fixing the behavior on the failing tests without breaking the pass-
ing tests. We also propose a heuristic that allows us to accelerate
the search by avoiding the execution of some tests. Experiments
on real-world AI-enabled CPSs show that the approach effectively
repairs their controllers.

CCS CONCEPTS

• Software and its engineering→ Search-based software en-

gineering; Software testing and debugging.
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1 INTRODUCTION

Cyber-physical systems (CPS) are systems in which physical plants
are controlled by computer systems, and they have been success-
fully applied in different domains, even safety-critical, like trans-
portation, healthcare, etc. In order to improve their capabilities,
CPSs are increasingly adopting deep neural networks (DNNs) as con-
trollers, leading to the emergence of a new class of systems called
AI-enabled CPS [20, 27, 32, 45]. For example, in autonomous driving
systems, DNN controllers permit to process complex environmental
data collected by sensors and produce intelligent control decisions.

Despite their numerous benefits, DNN controllers can be faulty
and can lead to failures of their AI-enabled CPSs; in safety-critical
domains, such as autonomous driving systems, such failures can
constitute serious safety issues. Debugging and improving DNNs is
particularly difficult due to their data-driven computation paradigm
and to the fact that the decision logic is not explicit but encoded
in the setting of the weights. In order to tackle this problem, DNN
repair is an emerging technique that allows performing localized
modifications to a DNNwith the goal to improve its performance [7,
17–19, 31, 34, 36, 42, 43].

However, the application of existing DNN repair approaches to
DNN controllers of AI-enabled CPSs is not straightforward. Indeed,
state-of-the-art repair techniques are usually applied for classifica-
tion problems and require to have ground-truth labels for the DNN
inputs used during repair. In an AI-enabled CPS, such ground-truth
information regarding the DNN controller is not available; indeed,
given a control decision of the DNN controller, it is not possible to
decide whether it is correct or not. On the other hand, requirements
are available regarding the expected behavior of the controlled
physical plant. Therefore, it is possible to specify system-level speci-
fications predicting the behavior of the controlled physical plant: if
these specifications are satisfied, we can (indirectly) conclude that
the DNN controller is behaving correctly; instead, a violation of the
system specification is an indication that the controller provided a
wrong control decision.

In this paper, based on this intuition, we propose ContrRep,
an approach to repair DNN controllers of AI-enabled CPSs that is
guided by the evaluation of a system-level specification. Specifically,
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ContrRep takes as input an AI-enabled CPSMCorig composed of a
physical plantM and a DNN controller Corig , a system specification
𝜑 overMCorig written in Signal Temporal Logic (STL), and a test
suite TS, in which some tests in TS satisfy the specification (called
TS+orig) and some do not (called TS−orig). ContrRep also takes in
input a set of suspicious weights SW of the DNN controller Corig ,
that have been identified by some fault localization technique [5, 6,
31]; these weights are those responsible for the failures in TS−orig .
ContrRep adopts a search-based approach to find an alternative
setting for weights SW , with the goal of making the system pass
the tests in TS−orig , and not break those in TS+orig .

During the search, ContrRep requires, for each fitness func-
tion evaluation, to execute the candidate AI-enabled CPSMCSW←𝑣

over all the tests in TS. This can be computationally expensive,
in particular, if the test execution relies on some expensive simu-
lation. To tackle this problem, we propose a version of the repair
approach (called ContrRepfast), that adopts a heuristic to compute
the fitness function faster. The heuristic method exploits the STL
quantitative robustness that, for a given system execution, not only
tells whether the specification is satisfied or not, but also provides
a real value that tells how robustly it does so (i.e., “how far” it is
from violation/satisfaction): negative robustness means that the
specification is violated, with lower values indicating more severe
violations; positive robustness, instead, means that the specification
is satisfied, with higher values indicating stronger satisfaction. The
heuristic method sorts the failed tests TS−orig by decreasing robust-
ness and evaluates them in order: as soon as a test is not repaired
(i.e., it is not satisfied by the candidate AI-enabled CPSMCSW←𝑣 ),
the remaining tests with lower robustness are not evaluated and
considered as failing, as it is unlikely that they could be repaired (as
they are more difficult to repair). Similarly, the passing tests TS+orig
are sorted by increasing robustness and evaluated in order: as soon
as a test passes (i.e., it is also satisfied by the candidate AI-enabled
CPSMCSW←𝑣 ), the remaining tests with higher robustness are not
evaluated and it is assumed that they will also pass (as they are
more difficult to break).

Paper structure. §2 introduces necessary background, and §3 presents
the proposed approach. §4 introduces the design of the experi-
ments, and §5 presents the experimental results. Finally, §6 discusses
threats that may affect the validity of the approach, §7 reviews re-
lated work, and §8 concludes the paper.

2 PRELIMINARIES

2.1 AI-Enabled Cyber-Physical Systems

Definition 1 (AI-enabled CPS). As shown in Fig. 1, an AI-enabled
CPS consists primarily of a DNN controller C and a physical plant
M. At a time instant 𝑡 , the DNN controller C gives a control deci-
sion c(𝑡) that decides the evolution of the state of the physical
plant, based on external input signal u(𝑡) and the state of the
plant y(𝑡). The dynamics of the plant is formulated as follows:
¤y(𝑡) =M(y(𝑡), c(𝑡)), whereM is a black-box function such that it
can accommodate complex dynamics and third-party confidential
components. Overall, the whole systemMC can be viewed as a
function that maps an input signal u to an output signal o. ◁

An illustritive figure of CPS 
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(a) AI-enabled CPS
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(b) Adaptive Cruise Control (ACC)

Figure 1: AI-enabled CPS model and an example ACC

The following example uses the ACC system (later introduced
in §4.2) to illustrate the operation process of a CPS system.

Example 1. Adaptive Cruise Control (ACC), as shown in Fig. 1b, is
an advanced control system that aims to maintain a safe distance of
a vehicle (ego car) from the preceding vehicle (lead car). In Fig. 1b,
the ego car is considered as the physical plant, under the control
of a DNN controller. The lead car is considered as the surrounding
environment, and its speed and position detected by the sensors of
the ego car are treated as the external input signal u(𝑡) to the ACC.
The signal y(𝑡) fed back from the plant is the speed and position of
the ego car. The two signals are combined into a vector x(𝑡) and
sent to the controller C as its input for decision-making. Based on
the input, the DNN controller C computes a control signal, i.e., the
acceleration of the ego car, to control the motion of the plant. ◁

As shown in Def. 1, the state evolution of the whole AI-enabled
CPS is primarily decided by the DNN controller, and therefore,
we take it as our main target for repairing unsafe system behav-
ior. While our technique is applicable to various types of neural
networks, we elaborate on the widely-adopted fully-connected
DNNs [31, 45].

Definition 2 (DNN controller). A DNN controller C is a function
that, at each timestamp, maps an input vector ®𝑥 to an output scalar
𝑐 (i.e., a control decision). It consists of 𝐿 hidden layers and an
output layer. The 𝑖-th hidden layer computes an output vector ®𝑥𝑖
by ®𝑥𝑖 = 𝜎 (W𝑖 ®𝑥𝑖−1 + ®𝑏𝑖 ), where ®𝑥𝑖−1 is the output of the (𝑖 − 1)-th
hidden layer,W𝑖 is a matrix of weights and ®𝑏𝑖 is a vector of bias
at the 𝑖-th layer, and 𝜎 is a non-linear activation function, such as
ReLU, sigmoid and tanh. The output layer computes the output 𝑐
of the DNN controller, by taking the weighted sum over different
components of the output ®𝑥 (𝑖) of the last hidden layer. ◁

In this paper, we follow the literature [18, 31, 34, 36] and consider
the weights as the target of repair. Specifically, we identify byW
the set of weights across all the hidden layers in a DNN controller.

2.2 System Specification

In AI-enabled CPSs, temporal logics, especially signal temporal logic
(STL), are often used as specification language that formalizes the
expected system behaviors and properties. In the following, we
review the STL syntax and semantics in [8].

Definition 3 (STL syntax). Let ®𝑜 ∈ R𝑑 be a vector. In STL, an
atomic proposition is represented as 𝛼 :≡ (𝑓 (®𝑜) > 0), in which
𝑓 : R𝑑 → R is a function that maps ®𝑜 to a real number. The syntax
of an STL formula 𝜑 is defined as follows:

𝜑 :≡ 𝛼 | ⊥ | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝜑1 ∨ 𝜑2 | □𝐼𝜑 | ^𝐼𝜑 | 𝜑1U𝐼𝜑2
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Here, 𝐼 is a time interval [𝑎, 𝑏], where 𝑎, 𝑏 ∈ R≥0 and 𝑎 < 𝑏. □𝐼 , ^𝐼
andU𝐼 are temporal operators always, eventually and until, that
allow to express complex temporal properties. ◁

The semantics of STL characterizes the extent to which a signal
o satisfies a specification 𝜑 . Formally, it is defined as follows.

Definition 4 (STL robust semantics). Given a system output signal
o and an STL specification 𝜑 , the robust semantics returns a quantity
⟦o, 𝜑⟧ ∈ R ∪ {∞,−∞} that indicates how robustly o satisfies or
violates 𝜑 . The formal definition of STL semantics is as below:

⟦o, 𝛼⟧ := 𝑓
(
o(0)

)
⟦o,¬𝜑⟧ := −⟦o, 𝜑⟧

⟦o, 𝜑1 ∧ 𝜑2⟧ := min
(
⟦o, 𝜑1⟧, ⟦o, 𝜑2⟧

)
⟦o,□𝐼𝜑⟧ := inf𝑡 ∈𝐼

(
⟦o𝑡 , 𝜑⟧

)
⟦o, 𝜑1 U𝐼 𝜑2⟧ := sup𝑡 ∈𝐼

(
min

(
⟦o𝑡 , 𝜑2⟧, inf𝑡 ′∈ [0,𝑡 )⟦o𝑡

′
, 𝜑1⟧

))
where o𝑡 denotes the 𝑡-shift of o, namely, for an arbitrary 𝑡 ′ ∈
[0,𝑇−𝑡], it holds that o𝑡 (𝑡 ′) = o(𝑡+𝑡 ′). The semantics of the omitted
operators can be derived from those of the existing operators, based
on their corresponding syntactic equivalence relations.

Through the robust semantics, we can infer the satisfaction of o
to 𝜑 : a positive ⟦o, 𝜑⟧ implies that o satisfies 𝜑 (i.e., o |= 𝜑), while a
negative ⟦o, 𝜑⟧ implies that o violates 𝜑 (i.e., o ̸ |= 𝜑); ◁

3 PROPOSED REPAIR APPROACH

In this section, we describe ContrRep, our proposed approach for
repairing DNN controllers of AI-enabled CPSs. Note that state-of-
the-art DNN repair approaches are not applicable to DNN con-
trollers, as they require the ground truth of the DNN behaviors that
are not available for DNN controllers. We share with existing DNN
repair approaches the basic assumption that failures are due to a
few components of the DNN that are not properly tuned, and only
these should be changed to fix the failures.

ContrRep takes in input an AI-enabled CPSMCorig , a system
specification 𝜑 , and a test suite TS of input sequences forMCorig .
TS should be generated with some generation technique [30, 44]
that guarantees enough coverage of the input space. Some tests
in the test suite satisfy 𝜑 and some do not; for convenience, we
partition the test suite as TS+orig ∪ TS

−
orig , where:

TS+orig = {𝑡 ∈ TS | MCorig (𝑡) |= 𝜑}

TS−orig = {𝑡 ∈ TS | MCorig (𝑡) ̸|= 𝜑}
The correctness of the DNN controller Corig depends on how

many tests satisfy the specification. We introduce a correctness
measure defined as:

CM (MCorig , 𝜑, TS) =
|TS+orig |
|TS | (1)

In the following, in §3.1, we explain how the weights to repair
are selected; in §3.2, we introduce our proposed repair approach,
and in §3.3, we present a heuristic to speed up the repair process.

3.1 Identification of the weights to repair

The components to modify during repair are usually identified by
some fault localization (FL) technique, inspired by fault localization
for classic code [41]. Different FL approaches have been proposed

for DNNs [4, 6, 31], mainly targeting the weights of the network; in
our work, we follow this trend, and we also consider the weights as
the target of the repair. The main intuition behind these approaches
is that the weights that are activated during failures are more likely
to be faulty; FL approaches identify these weights and return them
as suspicious weights SW .

Our approach assumes that some FL approach has been applied
to the weights of Corig , considering the results of the execution of
the test suite TS (i.e., TS+orig and TS−orig), and has identified a set of
suspicious weights. We want to point out that, similarly to FL for
classic code, DNN FL is usually able to correctly identify the faulty
weights in SW , but also identifies other additional weights that are
not responsible for the failures. However, it is not known which of
the returned weights are the faulty ones.

In our experiments, we are interested in assessing the capabilities
of the repair approach and not of the FL approach. Therefore, in
order to perform a proper assessment, we need to know the quality
of the FL results. To do so, we proceed as usually done in the
controlled experiments for automatic program repair [9]. Namely,
we inject faults in the weights of the controller Corig ; then, we build
the set of suspicious weights SW , by including these faulty weights
plus others that are actually correct. In this way, we reproduced in a
controlled way the noise that can be introduced by an FL approach
in the suspicious weights SW . We provide more details in §4.

3.2 ContrRep – Search-based repair of the

DNN controller

In this section, we present our proposed repair approach. We cast
the repair problem as a search problem, whose goal is to find better
values for the suspicious weights SW . Specifically, we define a
single-objective search problem as follows.

The search variables 𝑥 of the approach are the possible alternative
values for SW , i.e., :

𝑥 = [𝑥1, . . . , 𝑥 |SW | ]

A search individual 𝑣 is an assignment to the search variables that
can be generated during the search. A search individual identifies a
new DNN controller whose weights SW are set to the values 𝑣 and
the other weights keep the same value as in Corig . We will identify it
as CSW←𝑣 ; we will also identify asMCSW←𝑣 the AI-enabled system
equipped with the modified controller.

In order to define the search space for the search variables 𝑥 ,
we proceed as follows. The search space of a variable 𝑥 depends
on the original value 𝑣orig of the corresponding weight w in Corig .
Namely, we allow to modify the weight in a way that its contri-
bution to the activation function is at most 𝛿 times the original
one or at least a 1/𝛿 fraction of it, where 𝛿 ∈ R>0 is a parameter
of the search. This is obtained by defining the search space of 𝑥 as[
𝑣orig · 𝛿−sign(𝑣orig) , 𝑣orig · 𝛿sign(𝑣orig)

]
, where sign(𝑣orig) ∈ {−1, 1}

identifies the sign of 𝑣orig . In the experiments, we set 𝛿 = 2.
The goal of the search is to find an alternative controller CSW←𝑣

that can fix (i.e., make them pass) the tests failing with the original
controller (i.e., TS−orig) and not break those that were passing (i.e.,
TS+orig). So, given an individual 𝑣 , the fitness function that must be
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maximized is:

fit (𝑣) = CM (MCSW←𝑣 , 𝜑, TS) (2)

We adopt Differential Evolution (DE) [33] as the underlying
search algorithm as it has been successfully used in other DNN
repair approaches for image classifiers like Arachne [31]. However,
any other population-based algorithm could be adopted.

At the end of the search, the approach returns the individual that
obtained the best performance. We will identify the corresponding
controller and AI-enabled CPS as Cbest andMCbest .

3.3 ContrRepfast – Speeding Up the Fitness

Computation

The calculation of the fitness as described in §3.2 can be quite expen-
sive, in particular, if the test suite TS contains several tests and the
cost of executing one test is high (e.g. when relying on simulators).
Therefore, in this section, we propose a modified version of the
approach (called ContrRepfast) that adopts a fitness function that
still tries to compute the correctness measure, but in a faster way:

fitfast (𝑣) = ApproxFit(TS, TS−orig, TS
+
orig,M

CSW←𝑣 ) (3)

The fitness computation relies on the heuristic implemented in
the method ApproxFit that tries to avoid running all the tests by
estimatingwhich is the possible assessment (i.e., pass or fail) of some
of them. The heuristics makes use of the quantitative robustness
value associated with each test execution (see Def. 4) and it is based
on the following intuitions:
• let us consider a failing test 𝑡 in TS−orig (i.e., failing with the origi-
nal systemMCorig ) with negative robustness; if 𝑡 is not repaired
withMCSW←𝑣 (i.e., the robustness ⟦MCSW←𝑣 (𝑡), 𝜑⟧ of the test
𝑡 is still negative when executed withMCSW←𝑣 ), all the tests in
TS−orig having lower robustness will likely be not repaired as well.
The intuition is that the robustness value identifies the “difficulty
to repair” and if it is not possible to repair “easy tests” (i.e., tests
close to positive robustness), it is probably also not possible to
repair more difficult tests;
• let us consider a passing test 𝑡 in TS+orig (i.e., passing with the orig-
inal systemMCorig ) with positive robustness; if 𝑡 is still satisfied
(i.e., the robustness ⟦MCSW←𝑣 (𝑡), 𝜑⟧ of the test is still positive
withMCSW←𝑣 ), all the tests in TS+orig having higher robustness
will likely be still passing as well. The intuition is that if the repair
action does not break tests that are close to being violated (i.e.,
tests close to negative robustness), most probably also tests with
higher robustness (i.e., farther from violation) will be preserved.

Based on the previous intuitions, the heuristic ApproxFit is
defined as presented in Alg. 1. It works as follows:
• it sorts the tests failing withMCorig by decreasing robustness
(line 2) and those passing withMCorig by increasing robustness
(line 3);
• it visits the failing tests in decreasing order of robustness (line 5).
For each test 𝑡−

𝑖
:

– if the test passes with the AI-enabled CPS MCSW←𝑣 under
evaluation, i.e., the test is repaired (line 6), the counter of
passing tests TP is increased (line 7);

Algorithm 1 ApproxFit – Heuristic for fitness computation
Require: TS: test suite
Require: TS−orig : tests failing inM

Corig

Require: TS+orig : tests passing inM
Corig

Require: MCSW←𝑣 : AI-enabled CPS under assessment
Ensure: approximated fitness
1: function ApproxFit(TS, TS−orig , TS

+
orig ,MCSW←𝑣 )

2: [𝑡−1 , . . . , 𝑡−|TS−orig |
] ← sortDecrRob(TS−orig )

3: [𝑡+1 , . . . , 𝑡+|TS+orig |
] ← sortIncrRob(TS+orig )

4: TP ← 0 ⊲ # of tests passing withMCSW←𝑣

5: for 𝑖 ← {1, . . . , |TS−orig | } do
6: if MCSW←𝑣 (𝑡−

𝑖
) |= 𝜑 then

7: TP ← TP + 1
8: else

9: break
10: for 𝑖 ← {1, . . . , |TS+orig | } do
11: if MCSW←𝑣 (𝑡+

𝑖
) |= 𝜑 then

12: TP ← TP + ( ( |TS+orig | − 𝑖 ) + 1)
13: break
14: return

TP
|TS |

– otherwise, if the test fails, the approach assumes that also the
remaining tests with lower robustness will fail, and so it stops
the iteration (line 9);

• it visits the passing tests in increasing order of robustness (line 10).
For each test 𝑡+

𝑖
:

– if the test passes with the AI-enabled CPS MCSW←𝑣 under
evaluation, i.e., the test has not been broken (line 11), the
approach assumes that also all the other tests with higher
robustness will not be broken, and so the counter of passing
tests TP is increased accordingly without executing those tests
(line 12), and the iteration is stopped (line 13);

– otherwise, the iteration continues by executing the next test
with higher robustness.

• the ratio of passing tests over the total number of tests is returned
as computed approximated fitness ofMCSW←𝑣 (line 14).

4 EXPERIMENT DESIGN

We here present the design of the experiments. All the code, bench-
marks, and experimental results are reported online [21].

4.1 Research questions

We identified the following research questions (RQs) to assess the
proposed approach:
RQ1: How is the repair performance of ContrRep? Is it affected by

the quality of the fault localization results?
In this RQ, we want to assess if ContrRep can actually re-
pair DNN controllers. Moreover, we want to assess whether
having imprecise fault localization results (i.e., containing
weights that are not faulty) affects the repair effectiveness.

RQ2: Does ContrRepfast reduce the execution time of the repair
approach? Does it affect the repair performance?
In this RQ, we want to assess whether the heuristic imple-
mented by ContrRepfast is indeed effective in reducing the
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Table 1: AI-enabled CPSsMC and correctness measure of its

faulty versionsMCfault (CM (MCfault , 𝜑 , TS) (%))

MC ACC#1 ACC#2 AFC#1 AFC#2

Structure of C [15 15 15] [30 30 30] [15 15 15] [15 15 15 15]
#weights of C 450 1800 450 675
#blocks ofM 49 49 153 153

CM (MCfault , 𝜑, TS) 20 24 52 35

repair time, and which is the reduction that must be paid in
terms of repair performance.

RQ3: To what extent does ContrRep fix failing tests and break
passing tests?
In this RQ, we want to assess whether, while trying to repair
the failing tests, ContrRep also breaks some passing tests.

4.2 Benchmarks

To assess the effectiveness of ContrRep, we consider two industrial-
level CPSs to be used as plantM, taken from the automotive domain.
Both CPSs have been considered in previous works: Adaptive Cruise
Control [12, 22, 23, 37, 38] and Abstract Fuel Control [11, 25]. The
CPS is developed in Simulink [24], which in the industry is the de
facto standard formalism for modeling control systems.

For each CPS, we have created two different AI-enabled CPS
MC , by empowering them with a different DNN controller C. We
employed the approach described in [38, 45] to train the controllers.

Therefore, there is a total of four benchmarks, as shown in Table 1.
We also report the complexity of the AI-enabled CPS in terms of:
(i) number of Simulink blocks #blocks ofM, (ii) structure of C as
the number of neurons in each layer, and (iii) number of weights
#weights of C.
Adaptive Cruise Control (ACC). ACC [23], as introduced in Ex-
ample 1, controls the acceleration of the ego car to keep a safe
distance of it from a lead car. We consider the following specifi-
cation, i.e., the relative distance drel between the two cars should
always be greater than the sum of a constant dsafe and the braking
distance 1.4 · vego of the ego car during [0, 50], and moreover, the
speed vego of the ego car should be lower than 30.

𝜑ACC ≡ □[0,50] (drel ≥ dsafe + 1.4 · vego ∧ vego ≤ 30)

Abstract Fuel Control (AFC). AFC is a powertrain control system
developed by Toyota [11]. It takes two signals, pedal angle, and
engine speed, as the external inputs and produces two output signals
AF that indicate the air-to-fuel ratio and AFref that is the reference
value of AF . The specification requires that AF should not deviate
from AFref too much, during [0, 30].

𝜑AFC ≡ □[0,30]
(��AF − AFref �� ≤ 0.2 · AFref

)
4.2.1 Building faulty benchmarks. In order to properly assess the
capability of the compared approaches to repair a DNN controller,
we produce faulty versions of the trained controllers. Specifically,
for each AI-enabled CPSMC and its corresponding specification
𝜑 , we proceed as follows.

We generate a test suite TS of 100 tests forMC that uniformly
cover the input space; for all the benchmarks, all the tests pass, i.e.,

CM (MC, 𝜑, TS) = 1. Then, we randomly sample 10 weights of C,
and we mutate their values, by randomly sampling in [wmin,wmax ],
where wmin and wmax are the minimum and maximum weights val-
ues of C; we identify the mutated weights asWfault = {wfault

1 , . . . ,

wfault
10 } and the modified AI-enabled CPS asMCfault . If the correct-

ness measure ofMCfault is less than 0.6 (i.e., CM (MCfault , 𝜑, TS)),
we takeMCfault as the faulty benchmark to repair (i.e.,MCorig in
§3); otherwise, we sample other random values for the selected
weights. Table 1 reports the obtained values of CM (MCfault , 𝜑, TS).

4.3 Compared approaches

In the experiments, we assess the effectiveness of the proposed
repair approaches ContrRep and ContrRepfast. As explained in
§3.1, the approaches require an input of a set of weights SW to
repair, usually obtained using some fault localization results.

Following the common practice of assessment of repair approach-
es in automated program repair [9], for each faulty benchmark
MCfault , we built SW in a systematic way. We built three sets of SW ,
for assessing a repair approach in settings of different complexity:
• SW noNoise : we assume that the fault localization approach pre-
cisely identified the faultyweights and not others, i.e., SW noNoise =

Wfault (see §4.2.1). This setting allows to assess the capabilities
of a repair approach, not influenced by possible deficiencies of
the fault localization approach;
• SW 2 : we assume that the fault localization approach identified,
in addition to the faulty weights, two additional weights that are
not actually faulty, i.e., SW 2 =Wfault ∪ {w1,w2} with w1,w2 ∈
W \ Wfault . This setting allows to assess the capability of a
repair approach to handle noise introduced by fault localization;
• SW 4 : this setting is similar to SW 2 , but four weights in the fault
localization results are not faulty, i.e., SW 4 =Wfault ∪ {w1, w2,
w3, w4} with w1,w2, w3, w4 ∈ W \Wfault .

4.3.1 Setting of the search algorithm. ContrRep andContrRepfast
use DE as an underlying search algorithm to perform the repair.
We set the population size depending on the number of search vari-
ables, i.e., the number of suspicious weights in SW ; namely, we set
the population size to PopSize = 5 · |SW |. For all the experiments,
we set the maximum number of generations as NumGens = 50.
For DE, we used the implementation in PlatEMO [35]. We used
the default setting because evidence from the literature shows that
default settings can provide reasonable results [2].

4.4 Experimental setup

4.4.1 Running of the experiments. An experiment consists in the
execution of one approach (ContrRep or ContrRepfast. See §4.3),
over a specific faulty AI-enabled CPS (see §4.2.1), using a set of
suspicious weights SW (see §4.3). So, in total, there are 2×4×3 = 24
experiments.

As search algorithms include an element of randomness, by
following a guideline on running experiments with randomized
algorithms [1], we executed each experiment 10 times.

4.4.2 Evaluation metrics and assessment. To assess the repair effec-
tiveness of a repair approach (RQ1 and RQ2), as an evaluationmetric,
we consider the value of the correctness measure obtained by the
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Table 2: RQ1 and RQ2 – Average CM (MCbest , 𝜑 , TS) (%) of
ContrRep and ContrRepfast across the 10 runs. Values of

CM for ContrRepfast report the exact value and not the

approximate value computed by the approach

ContrRep ContrRepfast

ACC#1
SW noNoise 80.6 77.3
SW 2 83.8 77.9
SW 4 91.5 81.5

ACC#2
SW noNoise 80.5 83.3
SW 2 81.4 79.7
SW 4 73.2 73.0

AFC#1
SW noNoise 71.6 71.3
SW 2 78.0 77.1
SW 4 82.6 66.6

AFC#2
SW noNoise 72.9 50.7
SW 2 43.8 43.0
SW 4 59.6 57.4

best-repaired model, i.e., CM (MCbest , 𝜑, TS). For ContrRepfast, we
report the correct value of CM (i.e., evaluated over all the tests in
TS) and not the approximate value assessed by the heuristic method
employed by the approach.

To assess the computational cost of a repair approach (RQ2),
we consider the total number of test executions along the search
ExecTests.

When comparing two approaches App1 and App2 over a given
metric EM (i.e., CM or ExecTests), we compare the values obtained
across the repetition of the experiments. Specifically, for each faulty
benchmarkMCfault and set of suspicious weights SW :
• we compare the distributions of 10 values of EM obtained by App1
and by App2, using the Mann-Whitney U test, a non-parametric
test that assesses whether there is a significant difference among
the distributions. We use 𝛼 = 0.05 as the confidence value of the
null hypothesis that there is no significant difference.
• In case of significant difference, we use Vargha and Delaney’s
𝐴12 effect size to assess the strength of the significance; if 𝐴12 is
greater than 0.5, the results of App1 are significantly higher than
those of App2. By following Kitchenham et al.’s classification [15],
we identify the following categories of strength: negligible when
𝐴12 ∈ (0.5, 0.556), small when 𝐴12 ∈ [0.556, 0.638), medium
when 𝐴12 ∈ [0.638, 0.714), and large when 𝐴12 ≥ 0.714. Similar
categories can be identified for 𝐴12 < 0.5, i.e., when App1 is
significantly lower.

When evaluating CM , values of𝐴12 higher than 0.5 mean that App1
is better. Instead, when evaluating ExecTests, values of 𝐴12 lower
than 0.5 means that App1 is better.

5 EXPERIMENT RESULTS

Answer to RQ1. In this RQ, we want to assess if ContrRep is
actually able to repair the faulty DNN controllers. Table 2 reports,
for each approach, the average CM across the 10 runs. From the
results of Table 2, we observe that we are always able to improve
the correctness measure CM inMCbest w.r.t. the value of the faulty
benchmarkMCfault (see Table 1). We notice that the effectiveness is

lower for AFC, where the improvement ofCM is lower. The physical
plant in AFC has indeed complex dynamics that are difficult to
control by the DNN controller [11]. For ACC, instead, the control
problem is easier. This difference in complexity is witnessed by the
difference in # blocks of the controlled systemM (see Table 1).

Regarding the performance under different sets of suspicious
weights (i.e., SW noNoise , SW 2 , SW 4), we observe two types of re-
sults. In ACC#2 and AFC#2, the values of CM decrease when using
sets that contain weights that are not faulty (i.e., SW 2 and SW 4),
compared to the case in which we use only the faulty weights (i.e.,
SW noNoise). This is somehow expected, as, when using SW 2 and
SW 4 , the search tries to modify some weights that are not faulty
and this is not beneficial for the repair effectiveness: it can break
tests passing with the original model, and it wastes search time
in trying individuals that are not effective (i.e., those with large
changes in the non-faulty weights).

However, in ACC#1 and AFC#1, the value of CM increases when
using sets that contain weights that are not faulty (i.e., SW 2 and
SW 4). Although this is surprising at first, it can be explained by the
fact that, as explained in §4.3.1, the population size increases with
the number of variables (that corresponds to the size of SW ) and
this allows to perform more exploration of the solution space. In
these benchmarks, this higher exploration largely compensates for
the noise introduced by trying to modify the non-faulty weights.

Answer to RQ1: ContrRep is able to improve the correctness
measure of controllers of AI-enabled CPSs. In some cases, the
noise of fault localization results can negatively affect the
performance of repair.

Answer to RQ2. In this RQ, we assess to what extent the heuristic
applied by ContrRepfast can speed up the search and which im-
pacts the repair performance. Table 3 reports the statistical compar-
ison between ContrRepfast and ContrRep in terms of executed
tests ExecTests, and the average number of ExecTests across the 10
runs. We observe that ContrRepfast is largely significantly better
than ContrRep in almost all the benchmarks and fault localization
results (except for AFC#1 with SW 4). By looking at the average
across the 10 runs of the number of executed tests ExecTests, we
observe that ContrRepfast reduces them by one order of magni-
tude in 7 out of 12 benchmarks, and, in the other 5 benchmarks, it
reduces them to at least half. These results mean that when evalu-
ating the fitness (see Alg. 1), the approach was often able to skip
the evaluation of some tests, because some tests in TS−orig with high
robustness was not repaired (so skipping all the other tests in TS−orig
with lower robustness) and/or some test in TS+orig with low robust-
ness was not broken (so skipping all the other tests in TS+orig with
higher robustness).

Table 4 reports the statistical comparison in terms ofCM between
the approaches. By analyzing the results, we observe that usually
ContrRepfast is worst in terms of repair performance, confirmed
by the results in Table 2. This is expected, as it is the price we need to
pay to be faster. However, by comparing the values of CM in Table 2
for ContrRepfast with the values of CM of the original model
MCfault (see Table 1), we observe that ContrRepfast is always able
to improve the controller.
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Table 3: RQ2 –Comparison of ContrRepfast andContrRep

in terms of number of executed tests ExecTests
Legend: (≡: no sign. diff. between the two approaches. ✓: the

approach on the left is better than the one on top, ✗ means

that it is worse; the num. of symbols is the strength: negligible
(✓, ✗), small (✓✓, ✗✗),medium (✓✓✓, ✗✗✗), large (✓✓✓✓, ✗✗✗✗))

ContrRepfast vs. ExecTests (avg. 10 runs)
ContrRep ContrRepfast ContrRep

ACC#1
SW noNoise ✓✓✓✓ 7.0628e+04 2.5e+05
SW 2 ✓✓✓✓ 7.4871e+04 3.0e+05
SW 4 ✓✓✓✓ 9.9049e+04 3.5e+05

ACC#2
SW noNoise ✓✓✓✓ 3.9681e+04 2.5e+05
SW 2 ✓✓✓✓ 4.8032e+04 3.0e+05
SW 4 ✓✓✓✓ 6.2070e+04 3.5e+05

AFC#1
SW noNoise ✓✓✓✓ 1.0905e+05 2.5e+05
SW 2 ✓✓✓✓ 1.2923e+05 3.0e+05
SW 4 ✓ 1.7531e+05 3.07e+05

AFC#2
SW noNoise ✓✓✓✓ 8.4564e+04 2.5e+05
SW 2 ✓✓✓✓ 1.0180e+05 3.0e+05
SW 4 ✓✓✓✓ 1.2021e+05 3.5e+05

Table 4: RQ2 – Comparison of ContrRep and ContrRepfast

in terms of CM (MCbest , 𝜑 , TS) (legend as in Table 3)

ContrRep vs. ContrRepfast

ACC#1
SW noNoise ✓✓

SW 2 ✓✓✓✓

SW 4 ✓✓✓✓

ACC#2
SW noNoise ✗✗

SW 2 ✓✓✓

SW 4 ✓✓

AFC#1
SW noNoise ✗

SW 2 ≡
SW 4 ✓✓✓✓

AFC#2
SW noNoise ✓✓✓✓

SW 2 ✓✓✓✓

SW 4 ✓✓

From Table 4, we observe an unexpected result: ContrRepfast
is slightly better than ContrRep in ACC#2 for SW noNoise (with
strength small).1 We investigated this case and we observed that,
in ContrRep, the search finds good individuals that repair failing
tests with very low robustness (i.e., the hard ones to repair), but not
those with high robustness (i.e., that are close to being satisfied);
however, these individuals are not further improved during the
search to also repair the other failing tests. In ContrRepfast, the
fitness of such individuals is lower than the real CM: indeed, since
we do not repair the easy tests, we assume that the hard tests are not
repairable as well. ContrRepfast, instead, favors the individuals
that can repair the easiest tests first. Such individuals turn out to
be better in the long term during the search. Thus, it could be that,
for some benchmarks, it would be beneficial to prioritize the repair

1A similar result occurs for AFC#1 and SW noNoise , but with negligible strength.

Table 5: RQ3 – Number of repaired and broken tests (average

across 10 runs)

ContrRep ContrRepfast

TS−orig TS+orig TS−orig TS+orig

repaired not repaired preserved broken repaired not repaired preserved broken

ACC#1
SW noNoise 75.89% 24.11% 99.29% 0.71% 71.61% 28.39% 100.00% 0.00%
SW 2 79.64% 20.36% 100.00% 0.00% 72.32% 27.68% 100.00% 0.00%
SW 4 89.38% 10.63% 100.00% 0.00% 76.88% 23.13% 100.00% 0.00%

ACC#2
SW noNoise 74.34% 25.66% 100.00% 0.00% 78.03% 21.97% 100.00% 0.00%
SW 2 75.79% 24.21% 100.00% 0.00% 73.29% 26.71% 100.00% 0.00%
SW 4 65.13% 34.87% 100.00% 0.00% 64.80% 35.20% 100.00% 0.00%

AFC#1
SW noNoise 47.02% 52.98% 94.23% 5.77% 43.75% 56.25% 96.70% 3.30%
SW 2 62.50% 37.50% 92.31% 7.69% 64.84% 35.16% 88.46% 11.54%
SW 4 67.50% 32.50% 97.69% 2.31% 48.75% 51.25% 79.62% 20.38%

AFC#2
SW noNoise 66.84% 33.16% 84.13% 15.87% 29.23% 70.77% 90.48% 9.52%
SW 2 32.31% 67.69% 65.14% 34.86% 18.62% 81.38% 88.29% 11.71%
SW 4 36.92% 63.08% 64.00% 36.00% 29.85% 70.15% 85.71% 14.29%

of the easy tests. We leave as future work the investigation of such
prioritization during the search.

Answer to RQ2: Overall, ContrRepfast allows us to signifi-
cantly speed up the search, at the cost of a decrease in repair
effectiveness. Still, ContrRepfast can improve the controllers.

Answer to RQ3. In this RQ, we are interested in assessing how
ContrRep and ContrRepfast improve the correctness measure,
i.e., to what extent they repair the failing tests in TS−orig and preserve
those in TS+orig . Table 5 reports, for all the benchmarks and the two
approaches, the percentages of tests in TS−orig that are repaired and
not repaired, and the percentages of tests in TS+orig that are preserved
and broken. From the table, we observe that for ACC benchmarks,
tests in TS+orig that were passing with the original AI-enabled CPS
MCfault are almost never broken and still pass with the repaired
systemMCbest . In AFC benchmarks, instead, some tests in TS+orig
are broken, up to 36%.

Depending on the application domain, this could be a problem,
as some stakeholders may prefer not to break previously correct
behaviors to avoid regression. Note that, in our approaches, we
are only interested in maximizing the number of passing tests in
MCbest , so we do not take any measure to avoid breaking tests in
TS+orig , and we accept it if this allows us to increase the number of
repaired tests in TS−orig . We will consider as future work a version
of the approach that aims at repairing, without breaking previously
correct tests.

Regarding the number of repaired tests, we can never repair all
the tests, with lower performance in AFC#2 that, as seen in RQ1, is
the benchmark in which we obtain the worst results.

Answer to RQ3: Depending on the benchmark, the percent-
age of tests in TS+orig that are broken varies, with higher break
rates for the most difficult benchmarks. Similarly, the percent-
age of tests in TS−orig that are repaired depends on the difficulty
of the benchmark.
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6 THREATS TO VALIDITY

The validity of ContrRep could be affected by different threats [40].
Construct validity. A threat of this type could be that the metrics
we use for assessing the compared approaches (i.e., ContrRep
and ContrRepfast) are not suitable. In our context, the goal of
repair is to improve the performance of the AI-enabled CPS over
the test suite TS, which is measured by CM (see Eq. 1); therefore,
using CM as assessment metric is correct. ContrRepfast has been
introduced to speed up the search by avoiding executing all the tests
whose execution is computationally expensive; therefore, using
the number of executed tests ExecTests to compare ContrRep and
ContrRepfast is suitable.
Conclusion validity. ContrRep and ContrRepfast adopt the
search algorithm DE to perform the repair. The randomness of DE
can affect the results. Therefore, to account for the nondetermin-
istic nature of the repair approaches, we repeat each experiment
10 times as suggested by guidelines on running experiments with
randomized algorithms [1].2 Moreover, we have also used suitable
statistical tests to compare the approach by considering both sig-
nificant differences and effect size.
Internal validity. A threat of this type is that the obtained results
are by chance, for example, due to an instrumentation threat [40]
(e.g., faulty implementation). To mitigate this threat, we have care-
fully tested the implementation of ContrRep and ContrRepfast.
External validity. It could be that the performance of ContrRep
does not generalise to other AI-enabled CPS and DNN controllers.
To mitigate this threat, we have considered two industrial-scale
CPSs that are widely used in competitions on testing CPSs [25] and
DNN controllers [22].

7 RELATEDWORK

Different works have been proposed to test machine learning sys-
tems and systems empowered by machine learning components;
please refer to [30, 44] for recent surveys. In this work, we focus
on the activities that follow testing, specifically DNN repair.

DNN repair has been inspired by automatic program repair for
classic code; we refer the interested reader to recent surveys [9, 16,
26]. Here we review related work on DNN repair.

A simple way of repairing the DNN consists of retraining it by
using additional inputs. For example, Zhang et al. [43] introduced
the approach Apricot which retrains the DNN model by using dif-
ferent subsets of the training dataset and then merges them. Fahmy
et al. [7] proposed the approach HUDD, a repair approach for DNN
classifiers; the approach identifies the causes of failures by clus-
tering the heatmaps of the behaviors of each DNN layer, and then
uses the images that more likely lead to errors for retraining. Yu et
al. [42] introduced DeepRepair, which aims to improve a DNN classi-
fier against unknown noise that could be present in the operational
environment; it learns unknown failure patterns and introduces
them to retraining data via style transfer. Our approach differs from
all the previous approaches, as it considers DNN controllers (and

2Although 30 runs are suggested, it is also recognized in [1] that this may be not
possible when using computationally expensive systems as in our approach. In this
case, particular attention must be paid to the statistical assessment of the results.

not classifiers), it is not based on retraining, and it does not require
ground truth for the DNN behaviors.

An issue of retraining is that it modifies all the weights of the net-
work, and so it may not be able to repair the behavior of the failing
inputs without introducing other failures. To address this prob-
lem, a more popular approach consists of employing search-based
approaches to modify a few DNN components, usually identified
by some fault localization approach [6, 31]. For example, Sohn et
al. [31] introduced Arachne that identifies the weights that are re-
sponsible for misclassification and then uses differential evolution
to do the repair. Sun et al. [34] proposed a similar approach, but us-
ing PSO as a search algorithm. Li Calsi et al. [18] proposed DistrRep
that extends Arachne by considering different misclassifications:
it repairs each misclassification individually and then merges the
different models into a final repaired model. Tokui et al. [36] pro-
posed NeuRecover which focuses on the weights that were critical
during the training history. Our approach shares with the previ-
ous approaches the use of a search-based approach for modifying
the weights; however, differently from them, it uses system-level
specifications to guide the repair.

A different family of repair approaches [14, 28, 29] considers
different types of faults [10] at the architectural level (e.g., wrong
choice of the optimizer). These approaches target completely dif-
ferent problems than ours, and so a direct comparison is difficult.

Some works have been proposed for repairing the CPS (i.e., the
plantM ofMC ). For example, Valle et al. [39] proposed a search-
based approach for repairing the configuration of an elevator sys-
tem. Jung et al. [13] repair misconfigurations of swarm robots. Ben
Abdessalem et al. [3], instead, repair feature interaction bugs of
autonomous driving systems. These works are complementary to
ours, as they repair the physical plant, while we repair the controller.
Future work could consider a combined repair of both.

8 CONCLUSION

AI-enabled CPSs use DNNs as controllers of the physical plant.
Despite their advantages, DNN controllers can be faulty, leading
to wrong control decisions. We propose ContrRep, a search-based
repair approach for DNN controllers, guided by system-level speci-
fications. We further introduce ContrRepfast, a modification of the
approach that tries to speed up the search. Experiments show that
ContrRep is indeed able to repair faulty DNN controllers, and that
ContrRepfast can greatly reduce the computational complexity at
a small price in terms of repair effectiveness.

In this work, we assume that the plant is correct and that the
DNN controller must be fixed. However, some plants have hyper-
parameters that can be tuned, which can affect the behavior of
the AI-enabled CPS. In future work, we plan to investigate the
combined repair of the physical plant and the DNN controller.
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