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Abstract

While self-driving cars have already been widely investigated and achieved spectacular
progress, a major obstacle in applications is the great difficulty in providing formal guaran-
tees about their behaviors. Since the environment of the self-driving is usually not known
beforehand and highly uncertain, classical verification approaches cannot be applied to
guarantee safety. To cope with any traffic situation, a novel online verification framework
is presented for verifying behavioral safety of self-driving cars. The framework is based on
the proposed five safety considerations: new longitudinal and lateral safe distances, lane
changes, overtaking and how to face new traffic participants. Different from the previ-
ous verification considerations, this verification framework allows actual behaviors of self-
driving cars to be temporarily inconsistent with the popular strict safe distance. As long
as the self-driving car respects the minimum safe distance calculated by our technique
and executes improvement behaviors to restore the safe distance, it is still believed that
the predictive behavior is safe. The framework can easily be integrated to existing self-
driving systems and evaluate different indicators involving the steering angle, acceleration
and braking. The benefits of the framework in different urban scenarios of the CARLA
simulator and real traffic data provided by the NGSIM project are demonstrated. Results
show that the technology can successfully detect unsafe behaviors and provide effective
measures to avoid potential collisions.

1 INTRODUCTION

Self-driving cars have emerged as a widespread technology for
creating more efficient transportation. Several major vehicle
manufacturers including Tesla, GM, Ford, BMW, Baidu, and
Waymo/Google are actively trying to put self-driving cars into
society to test and improve systems, and this trend is likely to
continue and intensify. However, it has been reported that self-
driving cars lead to dangerous consequences like a fatal col-
lision [1–3]. These unexpected behaviors of self-driving cars
result in unsafe systems, and restrict the application of self-
driving cars. Hence, there is an urgent need for a well-studied
method that can provide formal guarantees for the self-driving
car’s behavior. Unfortunately, to provide guarantees for self-
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driving cars by test is difficult in terms of an impractical amount
of scenario requirements and long test time. A recent study has
revealed that self-driving cars need to be tested for 440 million
km to demonstrate that they have a better performance than
humans with a 95% confidence level [4]. This translates to 12.5
years of test driving with a fleet of 100 vehicles continuously
driving 24 h a day [5]. Automatic verification techniques are thus
sorely needed.

Verifying self-driving cars is a difficult task. Self-driving
cars are very sensitive to the driving environment, which is
usually not known beforehand and highly uncertain. Even in
simple scenarios, safety-critical situations can be created at
any time due to the sudden cut-in from other traffic partic-
ipants. Classical verification approaches perform the safety
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assessment offline before the vehicle is deployed, but they can-
not adjust to the changing environments and timing-constraints
of the vehicle in guaranteeing safety. Novel online verification
approaches are needed to cope with any traffic situation of
the self-driving vehicle during its operation. Moreover, some
verification approaches that are sensitive to real-time data and
interact with the environment, such as calculations involving
the safe distance, can only be verified online.

One approach to guarantee safety is collision avoidance. Spe-
cific methods include reachability analysis [6–8], inevitable colli-
sion state (ICS) [9–11], and passive safety [12]. Reachability anal-
ysis calculates reachable sets of the self-driving car and other
obstacles, and then checks for intersections, which represent
unsafe regions where collisions may occur. It is safe when any
feasible future motion of the self-driving car does not intersect
with the reachable set of each obstacle. However, the disadvan-
tage of the set-based technology is that unsafe regions may grow
rapidly in a long planning horizon, eventually blocking the entire
drivable area [5]. Similar to reachability analysis, ICS also calcu-
lates the state of collision. When the self-driving car is in ICS, no
matter which path is selected, a collision will eventually occur.
Motion plans are called passive safe, if the vehicle is at stand-
still at the time of collision, which is ensured by pre-computed
braking trajectories in [12]. However, these two approaches are
computationally expensive, and most works can only deal with a
single trajectory prediction of traffic participants for online cal-
culation.

Another potential approach is logical reasoning. Different
logic applications can guarantee safety, such as higher-order
logic in [13], multi-lane spatial logic in [14], and quantified dif-
ferential dynamic logic in [15]. However, these logical expres-
sions for the verification may become more complicated with
the complexity of systems, which increases the difficulty of ver-
ification. Moreover, it cannot provide sufficient guarantees in
facing new scenarios. Therefore, although collision avoidance
and logical reasoning are often used to check the performance
of self-driving systems, they are difficult to implement verifica-
tion.

In this work, we propose a novel online verification frame-
work to verify behavioral safety of self-driving cars. We recon-
sider the safety of lane changes and overtaking based on new
safe distances we have already proposed in [16]. New safe dis-
tances of self-driving vehicles focus on neglected aspects, inflex-
ible settings and overly idealistic assumption to supplement
existing works by considering the safe distances of each stage in
detail and modeling close to real traffic situations. Moreover, the
following vehicle’s response during lane changes is an important
but overlooked issue. Thus, we consider this issue and propose
feasible solutions to avoid or mitigate a potential collision. Mis-
behavior of new traffic participants is crucial to the current traf-
fic situation, not only affecting motion planning of self-driving
cars, but also bringing safety hazards. We propose a verifica-
tion framework for new traffic participants, which can track new
traffic participants with different safe distances and provide an
early warning to avoid potential collisions when the current con-
ditions unsatisfy the minimum safe distance. Finally, an online
verification framework is formed by five behavioral safety con-

siderations, which includes the longitudinal and lateral safe dis-
tances, safe lane changes, safe overtaking and how to face new
traffic participants.

In existing works, as long as the current safety conditions
are not satisfied, the predicted behavior of self-driving cars is
directly judged as unsafe. However, in our framework, before
the self-driving car reaches the limit of safety conditions (the
most stringent safety conditions), we will continue to track it. If
the self-driving car takes some measures to mitigate the current
situation until safety conditions are finally satisfied, we believe
that the predicted behavior is still safe. Therefore, our approach
is slack. During our online verification, we mark those cases
that unsatisfy safety requirements. These marks are reflected by
pre-setting 5 parameters (the rationality of planned trajectories,
the accuracy of the prediction model, the implementability, the
resilience and the sensitivity). These parameters can be used to
evaluate the performance of the self-driving system, and may be
used to guide planning trajectories or evaluate the accuracy of
behavior prediction in the future.

Our contributions can be summarized as follows. We (i) pro-
pose an online verification framework to verify the behavioral
safety of self-driving systems, which allows effortless integra-
tion in vehicles and reduces costs for certification; (ii) recon-
sider the safety of lane changes and overtaking based on new
safe distances; (iii) discuss implementation measures about the
response of the following vehicle during lane changes; (iv)
implement continuous tracking to quickly identify whether a
new traffic participant interferes with the predicted behavior of
the ego vehicle; (v) show the performance of self-driving sys-
tem by predetermined parameters; (vi) conduct a safety evalu-
ation on the CARLA’s self-driving system, demonstrating the
feasibility of our framework and finding safety hazards in the
self-driving system.

The rest of the paper is organized as follows. We begin with
some background on safe distances between vehicles in Sec-
tion 2. We then describe some verification conditions in the
safety framework in Section 3, followed by a safety frame-
work for self-driving cars in Section 4. Experimental results are
described in Section 5. Related work is discussed in Section 6,
and we conclude in Section 7.

2 BACKGROUND

In various verification approaches for self-driving cars, a key
component is the safe distance definitions between two vehi-
cles, which we denote as dsa fe . Current safety considerations
related to safe distances undertaken in many works are based on
the safe distance definitions of Responsibility Sensitive Safety
(RSS) [17] and Rizaldi et al. [18]. If there are no new traffic par-
ticipants in the current scenarios, the safety of a lane change
depends on four adjacent vehicles (the leading and following
vehicle in both the current and the target lane). In consensus
with Pek et al. [19], the ego vehicle must respect the safe dis-
tance to the leader in at least one of the lanes at every point in
time. When the ego vehicle approaches the gap and prepares
the lane change, it is necessary to respect the safe distance to
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the leader in the source lane. Once the ego vehicle completely
enters the source lane, the follower in the source lane is expected
to respect the safe distance to the ego vehicle.

2.1 Safe distance

To determine whether a self-driving car is in a safe state or even
if a planned maneuver can be safely executed, Vienna Conven-
tion on Road Traffic [20] adopted by 74 countries is introduced.
The Vienna Convention defines the safe distance between two
vehicles as a “sufficient distance to avoid a collision if the vehicle
in front should suddenly slow down or stop”. It means that the
safe distance dsa fe to a leading vehicle Bl must be large enough
for the ego vehicle to stop behind it if Bl , at worst, performs an
maximum emergency brake. According to the natural language
description of the safe distance in the Vienna Road Traffic Con-
vention, two different safe distance definitions mathematically
defined are proposed in [17] and [18].

The indices l and f denote the leading or following vehicle
of the ego vehicle inside a lane. t is the time, and we assume
that the initial time is t0 = 0. We use v to denote the velocity. a

and b denote the deceleration and acceleration, respectively, of a
vehicle. The future position of a vehicle for a point in time t ≥ 0
is expressed by the following motion equation:

d (t ) = d0 + vt +
1
2

at 2, (1)

where d0 denotes the position of the vehicle at t0.
In [18], Rizaldi et al. proposed the longitudinal safe distance

definitions, which takes reaction times 𝛿 ≥ 0 into account. The
leading vehicle performs an emergency brake with maximum
deceleration amax,l < 0. After 𝛿 > 0 seconds of reaction time,
the ego vehicle also performs an emergency brake with maxi-
mum deceleration amax,ego. The braking movement of the leading
vehicle mathematically is defined as follows:

dl (t ) =

⎧⎪⎪⎨⎪⎪⎩
d0,l + vl t +

1
2

amax,l t
2 0 ≤ t ≤ tstop,l

d0,l −
v2
l

2amax,l
ttstop,l

≤ t

, (2)

where tstop,l = vl ∕|amax,l | is the stopping time of the leading
vehicle. They model that the ego vehicle maintains its current
speed for 𝛿 s before performing an emergency brake. The brak-
ing movement of the leading vehicle mathematically is defined
as follows:

dego(t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d0,ego + vegot 0 ≤ t ≤ 𝛿

d0,ego + vegot +
1
2

amax,ego(t − 𝛿)2 𝛿 ≤ t ≤ tstop,ego + 𝛿

d0,ego + v2
ego𝛿 −

v2
ego

2amax,ego
ttstop,l

− 𝛿 ≤ t

,

(3)

where tstop,ego = vego∕|amax,ego| is the stopping time of the ego
vehicle. The ego vehicle collides with a leading vehicle Bl if their
positions are equal for some t ≥ 0:

∃t ≥ 0 ∶ dl (t ) − dego(t ) = 0. (4)

If dl (t ) − dego(t ) is regarded as a quadratic function, a collision
means that the equation has at least one zero solution. The
condition that the function has zero solution by mathematical
deduction is described as:

dl (𝛿) ≤ ustop,ego ∧ |amax,l | < |amax,ego| ∧ v∗
l
< vego ∧ tstop,ego < t ∗

l
,

(5)

where ustop,ego is the stopping distance of the ego vehicle includ-
ing the reaction time 𝛿, v∗

l
is the velocity of Bl at time 𝛿 after

starting emergency braking, and t ∗
l
= v∗

l
∕|amax,l | is the stopping

time of the leading vehicle. We refer interested reader to [18]
for the deduction details of arithmetic manipulations and rea-
soning. According to that, the minimum required safe distance
between the two vehicle is described by the following motion
equation:

dsa fe,1 =
(vl + amax,l 𝛿 − vego)

2

2(amax,l − aego)
− vl 𝛿 −

1
2

amax,l 𝛿
2 + vego𝛿. (6)

This situation describes the situation where the two vehicles
have the same speed before the two vehicles have stopped.
However, if the two vehicles do not have the same speed during
their whole movement, the minimum safe distance required is
described by the following motion equation:

dsa fe,2 =
v2
l

2amax,l
+ vego𝛿 −

v2
ego

2aego
. (7)

If the ego vehicle stops after dl (𝛿), that is, the position of the
leading vehicle at time t = 𝛿, we denote dl (𝛿) ≤ ustop,ego. Accord-
ing to [18], they check whether the distance is larger than dsa fe,1
in (6) when |amax,l | < |amax,ego| ∧ v∗

l
< vego ∧ tstop,ego < t ∗

l
is true.

Otherwise, they check the distance against dsa fe,2 because theory
in [18] suggests that there will be no collision. After introducing
the relative distance drel = dl − dego, we can conclude that the
ego vehicle respects the safe distance to the leading vehicle Bl if
the condition

((drel > dsa fe,1 ∧ (5)) ∨ (drel > dsa fe,2 ∧ ¬(5))), (8)

holds.
In [17], Shalev-Shwart et al. proposed the other definition

of longitudinal safe distance, which is based on the ego vehicle
using emergency braking with the minimum deceleration amin,ego

after the reaction time 𝛿. The safe distance is defined as:

dsa fe,3 =
v2
l

2amax,l
+
[
vego𝛿 +

1
2

bmax,ego𝛿
2
]
−

(vego + bmax,ego𝛿)2

2amin,ego
.

(9)
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We use B j to denote the vehicle at the side of the ego vehicle.
Furthermore, they also proposed the minimal lateral safe dis-
tance:

d lat
sa fe,1 = 𝜇 +

2vl + blat
max,l

𝛿

2
𝛿 +

(vl + blat
max,l

𝛿)2

2alat
min,l

−

[
2vego + alat

max,ego𝛿

2
𝛿 −

(vl + alat
max,l

𝛿)2

2alat
min,ego

]
, (10)

where 𝜇 is the minimum distance parameter, vl and vego are lateral
velocities, blat

max and alat
min are the maximum lateral acceleration

within the reaction time 𝛿 and the minimum lateral decelera-
tion after the reaction time 𝛿, respectively. The minimum lateral
distance is at least 𝜇 [17].

3 SAFETY CONDITIONS IN THE
SAFETY FRAMEWORK

3.1 New longitudinal and lateral safe
distances

Safe distance definitions of Responsibility Sensitive Safety
(RSS) [17] and Rizaldi et al. [18] based on formalized traffic
rules in Section 2 are efficient means for verifying the behavioral
safety of self-driving vehicles. However, existing definitions
of the longitudinal safe distance are not comprehensive in the
sense that, for example, they ignore the possibility of a collision
that may happen in between two vehicles start to decelerate
and stop. Moreover, the longitudinal safe distance between
the ego vehicle and the following vehicle lacks flexibility in
setting, and the lateral safe distance is considered too ideal.
Therefore, we presented new longitudinal and lateral safe
distance in our previous work [16], which focus on neglected
aspects, inflexible settings and overly idealistic assumption to
supplement the existing work by considering the safe distances
of each stage in detail and modeling close to real traffic situ-
ations. In this paper, we extend new longitudinal and lateral
safe distances to verify behavioral safety of lane changes,
overtaking and how to face new traffic participants. Thus, we
review, in this subsection, the main notions and results of new
safe distances. We refer interested readers to [16] for more
details.

During calculating the longitudinal safe distance between the
ego vehicle and the leading vehicle Bl , Bl performs an emer-
gency brake with the maximum deceleration amax,l , and then
performs a uniform deceleration motion. The longitudinal cur-
rent position of the leading vehicle Bl is described by the motion
equation:

dl (t ) = d0,l + vl t +
1
2

amax,l t
2, (11)

where vl is the velocity of the leading vehicle Bl . Motion curves
of the ego vehicle and the leading vehicle Bl as shown in

FIGURE 1 Motion curves of the ego vehicle and the leading vehicle Bl .
The blue curve represents the motion curve of the leading vehicle Bl . The
motion curve of the ego vehicle is shown as the red curve. The green curve
represents the motion curve of the ego vehicle considered in [18] (i.e. the
uniform motion performed by the ego vehicle during the reaction time 𝛿)

Figure 1. After the leading vehicle Bl performs an emergency
brake, the current motion of the ego vehicle is divided into two
stages. During the reaction time 𝛿, the ego vehicle performs a
uniform acceleration motion with the maximum acceleration
bmax,ego. The longitudinal current position of the ego vehicle for
any t ≤ 𝛿 is described by the motion equation:

dego(t ) = vegot +
1
2

bmax,egot
2, (12)

where vego is the velocity of the ego vehicle. And after the
reaction time, it performs a uniform deceleration motion with
the deceleration aego. The longitudinal current position of the
ego vehicle for t > 𝛿 is described by the motion equation:

dego(t ) = vego𝛿 +
1
2

bmax,ego𝛿
2 + (vego + bmax,ego𝛿)(t − 𝛿)

+
1
2

aego(t − 𝛿)2.

(13)

When the motion considered in the reaction time becomes
an acceleration motion, the speed of the ego vehicle changes
quickly, and the required safe distance is greater than that
in [18]. As Figure 1 shows, we can deduce that if the ego vehicle
is moving at a uniform acceleration during the reaction time
𝛿 and the leading vehicle Bl performs an emergency brake
with amax,l , a collision will occur according to the original safe
distance calculation.

We denote tstop,ego = 𝛿 − (vego + bmax,ego𝛿)∕aego and tstop,l =

−vl ∕amax,l as the stopping times of the vehicles. The maximum
and minimum value of tstop,ego and tstop,l are denoted tstop,max and
tstop,min. The distance function between the leading vehicle Bl

and the ego vehicle is defined as:

f (t ) = dl (t ) − dego(t ). (14)

As long as it is guaranteed that at any time t ∈ [0, tstop,max ], the
condition f (t ) > 0 always holds, and it can be ensured that the
ego vehicle will not collide with the leading vehicle Bl .
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According to the stopping time tstop,l of the leading vehicle
Bl , we divide the motion into two situations. The first situation
is the case of 𝛿 ≥ tstop,l , which describes the situation where the
ego vehicle fails to respond in reaction time 𝛿 after the lead-
ing vehicle Bl performs an emergency brake with the maximum
deceleration amax,l . We use 𝛿∗ to denote this longer reaction
time (i.e., 𝛿∗ > 𝛿). The distance function f (t ) is divided into
the following four cases:

∙ If tstop,l ≥ t ≥ 0, then

f (t ) = d0,l + vl t +
1
2

amax,l t
2 −

(
vegot +

1
2

bmax,egot
2
)
. (15)

∙ If 𝛿∗ ≥ t ≥ tstop,l , then

f (t ) = d0,l +
v2
l

2amax,l
−
(

vegot +
1
2

bmax,egot
2
)
. (16)

∙ If tstop,ego ≥ t ≥ 𝛿∗, then

f (t ) = d0,l +
v2
l

2amax,l
−

[
vegot + bmax,ego𝛿

∗

(
t −

𝛿∗

2

)
+

1
2

aego(t − 𝛿∗ )2

]
.

(17)

∙ If t ≥ tstop,ego, then

f (t ) = d0,l +
v2
l

2amax,l
−
[
vego𝛿

∗ +
1
2

bmax,ego(𝛿
∗ )2

]
+

(vego + bmax,ego𝛿
∗ )2

2aego
.

(18)

After solving f (t ) > 0, we get two longitudinal safe distances.
The first safe distance for tstop,l ≥ t ≥ 0 is as follows:

dsa fe,1 =
v2
l

2amax,l
+ vegotstop,l +

1
2

bmax,egot
2
stop,l

. (19)

The second safe distance for t ≥ tstop,l is as follows:

dsa fe,2 =
v2
l

2amax,l
+
[
vego𝛿

∗ +
1
2

bmax,ego(𝛿
∗ )2

]
−

(vego + bmax,ego𝛿
∗ )2

2aego
. (20)

The second situation is the case of 𝛿 < tstop,l . This situa-
tion describes that after the leading vehicle Bl performs an
emergency brake with the maximum deceleration amax,l , the
ego vehicle performs an emergency brake with the deceler-
ation aego after the reaction time 𝛿. This is also a generally
accepted view during calculating the longitudinal safe distance.

The distance function f (t ) is divided into the following five
cases:

∙ If 𝛿 ≥ t ≥ 0, then the distance function f (t ) is the same as
(15).

∙ If tstop,min > t > 𝛿, then

f (t ) = d0,l + vl t +
1
2

amax,l t
2 −

[
vegot + bmax,ego𝛿

(
t −

𝛿

2

)
+

1
2

aego(t − 𝛿)2

]
. (21)

∙ If tstop,ego > t ≥ tstop,l , then the distance function f (t ) is the
same as (17) except that 𝛿∗ in (17) is replaced by 𝛿.

∙ If tstop,l > t ≥ tstop,ego, then

f (t ) = d0,l + vl t +
1
2

amax,l t
2 −

(
vego𝛿 +

1
2

bmax,ego𝛿
2
)

+
(vego + bmax,ego𝛿)2

2aego
. (22)

∙ If t ≥ tstop,max , then the distance function f (t ) is the same as
(18) except that 𝛿∗ in (18) is replaced by 𝛿.

After solving f (t ) > 0, we get some longitudinal safe dis-
tances. To simplify, we denote c1 = (vl − vego)∕(bmax,ego − amax,l ),
c2 = (vl + aego𝛿 − vego − bmax,ego𝛿)∕(aego − amax,l ), and c3 = (vl +

aego𝛿 − vego − bmax,ego𝛿).

∙ If 𝛿≥t ≥ 0, there are two cases. If c1 ≥
𝛿

2
, then the collision

will not happen. If c1 <
𝛿

2
, then

dsa fe,1 = (vego − vl )𝛿 −
1
2

(amax,l − bmax,ego)𝛿
2. (23)

∙ If tstop,min > t > 𝛿 and amax,l < aego, there are two cases. If c2 ≤

(𝛿 + tstop,min )∕2, then

dsa fe,2 =
1
2

(aego − bmax,ego)𝛿
2 − (vl + aego𝛿 − vego

− bmax,ego𝛿)tstop,min −
1
2

(amax,l − aego)t
2
stop,min.

(24)

If c2 > (𝛿 + tstop,min )∕2, then the safe distance is the same as
(23).

∙ If tstop,min > t > 𝛿 and amax,l > aego, there are three cases. If
c2 ∈ [𝛿, tstop,min], then

dsa fe,3 =
(vl + al 𝛿 − vego − bmax,ego𝛿)2

2(amax,l − aego)
− vl 𝛿 −

1
2

amax,l 𝛿
2

+ vego𝛿 +
1
2

bmax,ego𝛿
2. (25)
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TABLE 1 Longitudinal safe distance between the ego vehicle and the
leading vehicle

Condition Safe distance

𝛿 ≥ t ≥ 0 ∧ c1 ≥
𝛿

2
0

tstop,min > t > 𝛿 ∧ amax,l = aego ∧ c3 ≥ 0

𝛿 ≥ t ≥ 0 ∧ c1 <
𝛿

2
dsa fe,1

tstop,min > t > 𝛿 ∧ amax,l < aego ∧ c2 > (𝛿 + tstop,min )∕2

tstop,min > t > 𝛿 ∧ amax,l > aego ∧ c2 < 𝛿

tstop,min > t > 𝛿 ∧ amax,l < aego ∧ c2 ≤ (𝛿 + tstop,min )∕2 dsa fe,2

tstop,min > t > 𝛿 ∧ amax,l > aego ∧ c2 > tstop,min

tstop,min > t > 𝛿 ∧ amax,l = aego ∧ c3 < 0

tstop,min > t > 𝛿 ∧ amax,l > aego ∧ c2 ∈ [𝛿, tstop,min] dsa fe,3

t ≥ tstop,min dsa fe,4

If c2 < 𝛿, then the safe distance is the same as (23). If c2 >

tstop,min, then the safe distance is the same as (24).
∙ If tstop,min > t > 𝛿 and amax,l = aego, there are two cases. If c3 ≥

0, then the collision will not happen. If c3 < 0, then the safe
distance is the same as (24).

∙ If t ≥ tstop,min, then the safe distance dsa fe,4 is the same as (20)
except that 𝛿∗ in (20) is replaced by 𝛿.

We summarizes these safe distances and corresponding con-
ditions mentioned above into Table 1.

During calculating the longitudinal safe distance between the
ego vehicle and the following vehicle B f , B f performs an emer-
gency brake with the maximum deceleration amax, f , and then
performs a uniform deceleration motion. The longitudinal cur-
rent position of the following vehicle B f is described by the
motion equation:

d f (t ) = v f t +
1
2

amax, f t 2, (26)

where v f is the velocity of the following vehicle B f . Motion
curves of the ego vehicle and the following vehicle B f as shown
in Figure 2.

If a collision occurs and the ego vehicle has respected the
traffic rules at all times, considering the question of liability,
a view in [21] is that another traffic participant must have
violated the rules and thus caused the collision. Therefore, in
the previous work, the planner of the system for self-driving
cars directly set the safe distance between the ego vehicle
and the following vehicle B f to be the same as the distance
between the ego vehicle and the leading vehicle Bl . However,
on real road traffic, if there is no vehicle in front of the ego
vehicle, there will be a more optimized and flexible design of
the safe distance. If the following vehicle B f cannot respect the
longitudinal safe distance to the ego vehicle, the ego vehicle
can accelerate to the maximum velocity. If there is a leading
vehicle in the source lane, a lane change becomes a better
choice when the traffic conditions in multiple lane support lane
change.

FIGURE 2 Motion curves of the ego vehicle and the following vehicle B f

when there is no leading vehicle Bl of the ego vehicle. The blue curve
represents the motion curve of the following vehicle B f . The motion curve of
the ego vehicle is shown as the red curve

In the traffic rules and the existing autonomous driving
research, the safe distance between the ego vehicle and the fol-
lowing vehicle is mainly maintained by the following vehicle.
Once the following vehicle cannot respect a safe distance to the
ego vehicle, it means that a collision will definitely occur if the
ego vehicle performs emergency braking. We consider that it is
possible for the ego vehicle to actively escape the collision haz-
ard in this situation. For example, the ego vehicle can accelerate
in a situation where there is no leading vehicle, increasing the
safe distance from the following vehicle to avoid or reduce the
collision. The following vehicle still respects the safe distance to
the ego vehicle, and setting this new safe distance actually adds a
layer of protection to the ego vehicle’s own safety and enhances
its ability to resist uncertain behaviors of the following vehicle.
This approach will not conflict with the application of the orig-
inal safe distance.

When there is no leading vehicle Bl in front of the ego
vehicle, we introduce new longitudinal safe distance and the
dangerous distance (i.e., when the distance between the two
vehicles is less than the dangerous distance, a collision must
occur.) between the ego vehicle and the following vehicle
B f . After the following vehicle B f performs an emergency
brake, the current motion of the ego vehicle is divided into
three stages. During the reaction time 𝛿, the ego vehicle per-
forms a uniform motion. The longitudinal current position
of the ego vehicle for any t ≤ 𝛿 is described by the motion
equation:

dego(t ) = d0,ego + vegot . (27)

After the reaction time 𝛿, it performs a uniform acceleration
motion with the maximum acceleration bmax,ego. The time for
the ego vehicle to accelerate from the current velocity vego

to the maximum velocity vmax,ego with the maximum accel-
eration bmax,ego is denoted as ta,ego = (vmax,ego − vego)∕bmax,ego.
The longitudinal current position of the ego vehi-
cle for 𝛿 + ta,ego > t > 𝛿 is described by the motion
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equation:

dego(t ) = d0,ego + vegot +
1
2

bmax,ego(t − 𝛿)2. (28)

Once the ego vehicle accelerates to the maximum velocity
vmax,ego, it will perform a uniform motion. The longitudinal
current position of the ego vehicle for 𝛿 + ta,ego > t > 𝛿 is
described by the motion equation:

dego(t ) = d0,ego + vego(𝛿 + ta,ego) +
1
2

bmax,egot
2
a,ego

+ vmax,ego(t − 𝛿 − ta,ego). (29)

We use tstop, f =
v f

amax, f

to denote the stopping time of the fol-

lowing vehicle B f . The distance function between the following
vehicle B f and the ego vehicle is defined as:

g(t ) = dego(t ) − d f (t ). (30)

As long as it is guaranteed that at any time t ∈ [0, tstop, f ], the
condition g(t ) > 0 always holds, and it can be ensured that the
ego vehicle will not collide with the following vehicle B f . There-
fore, d0,ego such that g(t ) > 0 is the minimal longitudinal safe dis-
tance dsa fe . The distance function f (t ) is divided into the follow-
ing five cases:

∙ If 𝛿 ≥ tstop, f > t ≥ 0 or tstop, f > 𝛿 ≥ t ≥ 0, then

g(t ) = d0,ego + vegot −
(

v f t +
1
2

amax, f t 2
)
. (31)

∙ If 𝛿 ≥ t ≥ tstop, f ≥ 0, then

g(t ) = d0,ego + vegot +
v2

f

2amax, f
. (32)

∙ If 𝛿 + ta,ego ≥ tstop, f > t > 𝛿 or tstop, f > 𝛿 + ta,ego ≥ t > 𝛿,
then

g(t ) = d0,ego + vegot +
1
2

bmax,ego(t − 𝛿)2 −
(

v f t +
1
2

amax, f t 2
)
.

(33)
∙ If 𝛿 + ta,ego > t ≥ tstop, f > 𝛿, then

g(t ) = d0,ego + vegot +
1
2

bmax,ego(t − 𝛿)2 +
v2

f

2amax, f
. (34)

∙ If tstop, f ≥ t ≥ 𝛿 + ta,ego, then

g(t ) = d0,ego + vego(𝛿 + ta,ego) +
1
2

bmax,egot
2
a,ego

+ vmax,ego(t − 𝛿 − ta,ego) −
(

v f t +
1
2

amax, f t 2
)
.

(35)

After solving g(t ) > 0, we get some longitudinal safe
distances between the following vehicle B f and the ego
vehicle. To simplify, we denote z1 = (vego − v f )∕amax, f ,
z2 = (v f + amax, f 𝛿 − vego)∕(bmax,ego − amax, f ) and z3 =

(vmax,ego − v f )∕amax, f .

∙ If 𝛿 ≥ tstop, f > t ≥ 0, there are three cases. If vego ≥ v f , then
the collision will not happen. If vego < v f and z1 ≥ tstop, f , then

dsa fe,1 = −
v2

f

2amax, f
− vegotstop, f . (36)

If vego < v f and z1 < tstop, f , then

dsa fe,2 = −
(vego − v f )2

2amax, f
. (37)

∙ If tstop, f > 𝛿 ≥ t ≥ 0, there are three cases. If vego ≥ v f , then
the collision will not happen. If vego < v f and z1 ≥ 𝛿, then

dsa fe,3 = (v f − vego)𝛿 +
1
2

amax, f 𝛿
2. (38)

If vego < v f and z1 < tstop, f , then the safe distance is the same
as (37).

∙ If 𝛿 ≥ t ≥ tstop, f ≥ 0, then the safe distance is the same as
(36).

∙ If 𝛿 + ta,ego ≥ tstop, f > t > 𝛿, then there are three cases. If
z2 ≤ 𝛿, then the safe distance dsa fe,4 is the same as (38). If
tstop, f > z2 > 𝛿, then

dsa fe,4 =
(v f + bmax,ego𝛿 − vego)

2

2(bmax,ego − amax, f )
−

1
2

bmax,ego𝛿
2. (39)

If z2 ≥ tstop, f , then

dsa fe,5 = −vegotstop, f −
1
2

bmax,ego(tstop, f − 𝛿)2 −
v2

f

2amax, f
. (40)

∙ If 𝛿 + ta,ego > t ≥ tstop, f > 𝛿, then the safe distance is the
same as (40).

∙ If tstop, f > 𝛿 + ta,ego ≥ t > 𝛿, then there are three cases. If
z2 ≤ 𝛿, then the safe distance is the same as (38). If 𝛿 +
ta,ego > z2 > 𝛿, then the safe distance is the same as (39). If
z2 ≥ 𝛿 + ta,ego, then

dsa fe,6 = (v f − vego)(𝛿 + ta,ego) −
1
2

bmax,egot
2
a,ego

+
1
2

amax, f (𝛿 + ta,ego)
2.

(41)

∙ If tstop, f ≥ t ≥ 𝛿 + ta,ego, then there are three cases. If
z3 < 𝛿 + ta,ego, then the safe distance is the same as (41). If
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TABLE 2 Longitudinal safe distance between the ego vehicle and the
following vehicle

Condition Safe distance

𝛿 ≥ tstop, f > t ≥ 0 ∧ vego ≥ v f 0

tstop,ego > 𝛿 ≥ t ≥ 0 ∧ vego ≥ v f

𝛿 ≥ tstop, f > t ≥ 0 ∧ vego < v f ∧ z1 ≥ tstop, f dsa fe,1

𝛿 ≥ t ≥ tstop, f ≥ 0

𝛿 ≥ tstop, f > t ≥ 0 ∧ vego < v f ∧ z1 < tstop, f dsa fe,2

tstop, f > 𝛿 ≥ t ≥ 0 ∧ vego < v f ∧ z1 < tstop, f

tstop, f > 𝛿 ≥ t ≥ 0 ∧ vego < v f ∧ z1 ≥ 𝛿 dsa fe,3

𝛿 + ta,ego ≥ tstop, f > t > 𝛿 ∧ z2 ≤ 𝛿

tstop, f > 𝛿 + ta,ego ≥ t > 𝛿 ∧ z2 ≤ 𝛿

𝛿 + ta,ego ≥ tstop, f > t > 𝛿 ∧ tstop, f > z2 > 𝛿 dsa fe,4

tstop, f > 𝛿 + ta,ego ≥ t > 𝛿 ∧ 𝛿 + ta,ego > z2 > 𝛿

𝛿 + ta,ego ≥ tstop, f > t > 𝛿 ∧ z2 ≥ tstop, f dsa fe,5

𝛿 + ta,ego > t ≥ tstop, f > 𝛿

tstop, f > 𝛿 + ta,ego ≥ t > 𝛿 ∧ z2 ≥ 𝛿 + ta,ego dsa fe,6

tstop, f ≥ t ≥ 𝛿 + ta,ego ∧ z3 < 𝛿 + ta,ego

tstop, f ≥ t ≥ 𝛿 + ta,ego ∧ tstop, f > z3 > 𝛿 + ta,ego dsa fe,7

tstop, f ≥ t ≥ 𝛿 + ta,ego ∧ z3 ≥ tstop, f dsa fe,8

tstop, f > z3 > 𝛿 + ta,ego, then

dsa fe,7 = −
(vmax,ego − v f )2

2amax, f
− vego𝛿 −

1
2

(vego + vmax,ego)ta,ego

+ vmax,ego(𝛿 + ta,ego). (42)

If z3 ≥ tstop, f , then

dsa fe,8 = − vego𝛿 −
1
2

(vego + vmax,ego)ta,ego

− vmax,ego(tstop, f − 𝛿 − ta,ego) −
v2

f

2amax, f
.

(43)

We summarizes these safe distances and corresponding con-
ditions mentioned above into Table 2.

The ideal minimal lateral safe distance in Section 2 is that
the ego vehicle and the vehicle B j in adjacent lanes acceler-
ate with the maximum lateral acceleration blat

max,ego and blat
max, j

within the reaction time 𝛿, and decelerate with the minimum
lateral deceleration alat

min,ego and alat
min, j after the reaction time 𝛿.

However, due to the limitation of the human driver’s viewing
angle during the driving, the vehicle B j may ignore dangerous
situation and fail to slow down in time. The worst state is that
the vehicle B j has not take any measures to avoid or mitigate
a potential collision (i.e. it still uses the maximum lateral accel-
eration blat

max, j to approach the ego vehicle laterally). The lateral
current position of the vehicle B j is described by the motion

FIGURE 3 Motion curves of the ego vehicle and the vehicle B j . The blue
curve and the green curve represent the motion curve of the adjacent vehicle
B j we consider and that of the adjacent vehicle B j considered in [18],
respectively. The motion curve of the ego vehicle is shown as the red curve

equation:

d lat
j (t ) = d lat

0, j −
(

vlat
j t +

1
2

blat
max, j t

2
)
, (44)

where vlat
j is the lateral velocity of the vehicle B j . Motion

curves of the ego vehicle and the adjacent vehicle B j as shown
in Figure 3. The ego vehicle decelerates with the maximum
lateral deceleration alat

min,ego after the reaction time 𝛿. The lateral
current position of the ego vehicle is described by the motion
equation:

d lat
ego (t ) = vlat

ego𝛿 +
1
2

blat
max,ego𝛿

2 +
(
vlat
ego + blat

max,ego𝛿
)

(t − 𝛿)

+
1
2

alat
min,ego(t − 𝛿)2,

(45)

where vlat
ego is the lateral velocity of the ego vehicle. The distance

function between the vehicle B j and the ego vehicle is defined
as:

h(t ) = d lat
j (t ) − d lat

ego (t ). (46)

If h(t ) > 𝜇, then the lateral safe distance between
the vehicle B j and the ego vehicle is satisfied. After
solvingh(t ) > 𝜇, We obtain two lateral safe distances. To
simplify, we denote t lat

ego = −(vlat
ego + blat

max,ego𝛿)∕alat
min,ego and

w = −(vlat
ego + blat

max,ego𝛿 − alat
min,ego𝛿 + vlat

j
)∕(blat

max, j + alat
min,ego). The

first safe distance for blat
max, j ≤ −alat

min,ego is as follows:

d lat
sa fe,1 = 𝜇 + vlat

j t lat
ego +

1
2

blat
max, j

(
t lat
ego

)2
+ d lat

ego

(
t lat
ego

)
. (47)

The second safe distance for blat
max, j > −alat

min,ego have two cases.

If w > t lat
ego , then the safe distance d lat

sa fe
is the same as (47). If
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FIGURE 4 Lane change maneuvers

w ≤ t lat
ego , then

d lat
sa fe,2 = 𝜇 −

(
vlat

j + vlat
ego + blat

max,ego𝛿 − alat
min,ego𝛿

)2

2
(

blat
max, j + blat

max,ego

)
+

1
2

alat
min,ego𝛿

2 −
1
2

blat
max,ego𝛿

2.

(48)

3.2 Lane change maneuvers and overtaking

Safe overtaking is based on safe lane changes, which can be
regarded as two continuous lane changes and one acceleration
motion. We divide the types of continuous lane changes into
the same direction (change the lane to the left lane twice) and
the different directions (change the lane to the left lane and
then to the right lane). Here, overtaking are two continuous lane
changes in different directions. Therefore, we can verify the safe
overtaking by considering the safety of lane change maneuvers
of self-driving cars.

Let y is the lateral distance between the center of current lane
l1 and the center of target lane l2, where y is the distance needed
to change a lane. We denote 𝛿s as the reaction time needed to
execute steering. We divide the required time ts to perform a
steering maneuver into two parts. We introduce tl1 and tl2 as the
time intervals during which the occupancy of the ego vehicle is
located in lane l1 and l2, respectively. As shown in Figure 4, we
take the time to determine the overtaking as the starting time
of tl1 , the steering angle starts to change after the reaction time
𝛿s , and the time when the center position of the rear of the ego
vehicle reaches the center line is used as the end time of tl1 . As
shown in the blue line in Figure 4, we take the time that the
center position of the front of the ego vehicle reaches the center
line as the starting time of tl2 , and the time when the steering
angle returns to the front is the end time of tl2 .

In the previous work, in order to guarantee safety of lane
change maneuvers, the ego vehicle always respects a safe dis-
tance to the leading and following vehicles during the planned
trajectory. The safe free space  t of the ego vehicle for a point

in time t ≥ 0 is defined as

 t = {d ∈ ℝ ∣ d f (t ) + dsa fe, f (t ) < d < dl (t ) − dsa fe,l (t )}.
(49)

To verify the safety, the ego vehicle needs to be driven within
the respective safe spaces,  t

1 in l1 and 
t
2 in l2, at any time t ≤ ts

during the lane change, that is

∀t ≤ tl1 ∶ dego(t ) ∈ 
t
l1
∧ ∀t − tl1 ≤ tl2 ∶ dego(t ) ∈ 

t
l2
. (50)

If no new traffic participant appears and affects the planned
trajectories during the lane change, the basic condition for the
ego vehicle to change lanes is to respect the required safe dis-
tance to other vehicles in the l1 and l2 lanes. Furthermore, the
leading vehicle Bl on l1 or l2 is preferably in a constant speed or
accelerating state. Otherwise, if the leading vehicle Bl suddenly
decelerates, there is a safety hazard. Similarly, the following vehi-
cle B f on l1 or l2 is preferably in a constant speed or decelerating
state. Otherwise, if the following vehicle B f suddenly acceler-
ates, there is also a safety hazard.

For the situation where there is only the leading vehicle or
only the following car in lanes l1 and l2, if the leading vehicle
suddenly decelerates or the following car suddenly accelerates,
the ego vehicle can adjust its speed to compensate for a sudden
deceleration (even for emergency braking) or acceleration dur-
ing the lane change. The most complicated situation is that there
are both the leading and following vehicles in lane l1 or l2.

a) When there are the leading and following vehicles in the lane
l1, the ego vehicle must respect safe distances to the lead-
ing vehicle Bl and the following vehicle B f before starting
to change lanes. The speed vego is decomposed into the lat-
eral speed vego,y and the longitudinal speed vego,x during the
lane change. When t ≤ tl1 , vego,x is decreasing, and the lon-
gitudinal distance dl − dego between the leading vehicle Bl

and the ego vehicle becomes larger, the longitudinal distance
dego − d f between the following vehicle B f and the ego vehi-
cle is reduced, which brings a risk of a collision with the fol-
lowing vehicle B f . The ego vehicle need increase dego − d f

by accelerating (increasing vego,x ) in time to respect a safe dis-
tance to the following vehicle B f . However, the longitudinal
distance dego − d f cannot be too large, otherwise dl − dego will
decrease, bringing a risk of a collision with the leading vehi-
cle Bl . Therefore, when the ego vehicle is about to leave the
boundary of lane l1, dego − d f must satisfy the safe distance.

b) When there are the leading and following vehicles in the lane
l2, the ego vehicle must respect safe distances to the leading
vehicle Bl and the following vehicle B f before entering the
boundary of the lane l2. Similarly, the ego vehicle’s speed vego

is decomposed into the lateral speed vego,y and the longitu-
dinal speed vego,x during the lane change. When t − tl1 ≤ tl2 ,
vego,x increases, the longitudinal distance dl − dego decreases,
the longitudinal distance dego − d f increases, which brings a
risk of a collision with the leading vehicle Bl . The ego vehi-
cle need increase dl − dego by decelerating (reducing vego,x ) in
time to respect a safe distance to the following vehicle Bl .
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However, the longitudinal distance dego − d f cannot be too
large, otherwise dego − d f will decrease, which will bring a
risk of a collision with the following vehicle B f . When the
ego vehicle just reaches the boundary of the lane l2, dego − d f

must satisfy the required safe distance, and when the lane
change is completed, dl − dego must satisfy the required safe
distance.

In the target lane l2, if the leading vehicle Bl decelerates and
the following vehicle B f accelerates, the ego vehicle continues
to track. Once the ego vehicle cannot respect safe distances to
the leading vehicle Bl and the following vehicle B f at the same
time, it immediately abandons the lane change and returns to
the original lane l1 or changes the lane to the adjacent lane l4 of
lane l2 (if there is a lane change opportunity in lane l4). If new
traffic participants appear, and the original lane l1 and lane l4
(if they exist) are occupied, the ego vehicle cannot change lanes
and has to perform an emergency brake maneuver.

New traffic participants often appear in the driving of self-
driving cars, and they may affect the predicted behavior and
planned trajectory, as well as during lane change maneuvers.

a) When t ≤ tl1 , there are two cases. If there is a new traffic
participant in lane l1 and it breaks into the safe space  t

l1
of

the ego vehicle, the ego vehicle can speed up the lane change
or start emergency braking. If a new traffic participant enters
lane l2 first or is about to enter lane l2, we check whether
the safe distance is respected, if respected, the ego vehicle
continues to change lanes, if not respected, the ego vehicle
accelerates to become its leading vehicle or slow down to
become its following vehicle, and finds other opportunities
to change lanes.

b) When t − tl1 ≤ tl2 , there are also two cases. If the lane
change fails, the ego vehicle thus wants to return to the orig-
inal lane l1. But at this same time, there are new traffic par-
ticipants in lane l1, for example, the safe space 

t
l1

of the
ego vehicle is already occupied by other vehicle, or the cur-
rent traffic situation is changed due to the insertion of a new
vehicle. The ego vehicle can accelerate to become its leading
vehicle and then change lanes or change lanes to the adja-
cent lane l4 of lane l2. If the lane change is impossible, the
emergency brake will be activated. If there is a new traffic
participant in lane l2, the current traffic situation is changed.
The ego vehicle can decelerate or accelerate to respect the
safe distance to it, or changes lanes if the safe distance can-
not be respect, or performs an emergency brake maneuver
if there is no opportunity for the lane change maneuver.

If the ego vehicle fails to change lanes, how to safely return to
the original lane l1 becomes a crucial issue. When t ≤ tl1 , the ego
vehicle can straighten the steering angle and continue to drive
on lane l1. If t − tl1 ≤ tl2 , the self-driving system first checks
whether there is a chance to change lanes. If there is an oppor-
tunity, the ego vehicle will immediately start the lane change. If
the safe space in the original lane l1 is occupied by other vehi-
cles, the ego vehicle can turn on the turn signal to convey the
lane change intention to the following vehicle in lane l1. We can

track whether the following vehicle will give way politely. If the
following vehicle refuses to coordinate, the ego vehicle can cre-
ate an opportunity to change lanes by accelerating or decelerat-
ing. If the lane change is impossible all the time, the ego vehicle
only slows down and try to restore a safe distance with the lead-
ing vehicle, otherwise it has to start emergency brake.

How the following vehicle should react to the leading vehicle
is also an important problem, but it was ignored in previous
work. In order to solve this problem, we propose some safety
strategies.

a) For the ego vehicle and the leading vehicle Bl in lane l1, there
are two cases. When the ego vehicle receives the lane change
instruction from Bl , if the self-driving system detects that Bl

has turned on the turn signal to convey its lane change inten-
tion, the ego vehicle should cooperate; if the ego vehicle has
started to change lanes, Bl starts to change lanes again and
occupies the safe space  t

l2
of the ego vehicle, which belongs

a misbehavior of Bl .
b) For the ego vehicle and the leading vehicle Bl in lane l4, there

are also three cases. If the leading vehicle Bl has entered lane
l2 before the ego vehicle, we consider the safe distance, if it
can be respected, continue to change lanes, if not, give up
this lane change. If the ego vehicle and Bl enter l2 at the
same time, we check whether the safe distance is respected,
if it is respected, the ego vehicle continues to change lanes,
if not respected, the ego vehicle tries to decelerate to restore
the safe distance, and if it still fails to recover, the ego vehicle
has to give up this lane change. If the ego vehicle has com-
pletely entered l2 and Bl is still close to l2, which belongs
a misbehavior of Bl , and the treatment is the same as the
second case.

The above process reflects the rationality of the ego vehicle’s
trajectory planning and the accuracy of the prediction model.
When the safe distance is unsatisfied, we keep the tracking to
observe whether the ego vehicle implements feasible solutions
to avoid or mitigate a potential collision in time. It can reflect
the sensitivity, implementability and resilience of the self-driving
system. Therefore, a safe self-driving system should ensure that
the ego vehicle responds sensitively to the deceleration of Bl

and the acceleration of B f during the lane change, and avoids
the risk of collision. An overtaking behavior of the ego vehicle
can be regarded as two consecutive lane changes and an accel-
eration process. As long as it is ensured that the safety require-
ments are satisfied during the two consecutive lane changes, it
can be determined that the overtaking behavior of the ego vehi-
cle is safe.

3.3 New traffic participants

A safe lane change guarantees that no collision occurs accord-
ing to traffic rules and RSS concept [17], while a single vehicle
cannot ensure that it will never be involved in a collision [22].
In fact, self-driving cars often encounter some disturbance
objects, which suddenly appear in traffic scenarios. The new
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traffic participant refers to the new physical object that is
sensed by the sensors of the self-driving vehicle, which can be a
vehicle, a pedestrian or an animal. When new traffic participants
appear, the current traffic environment of the ego vehicle may
be changed, which may cause a potential collision, such as
a corrected steering angle incident of Didi’s self-driving car.
When the interviewer was riding in a Didi self-driving car, there
was a takeover. The Didi’s takeover occurred at an intersection
when a laterally approaching vehicle suddenly drove into the
lane. The security officer carried out a dynamic takeover due
to safety considerations. The dynamic takeover (vehicle from
moving to stationary) means that there are potential collision
risks in the driving process of the self-driving car, and the
safety officer will immediately take over the ego vehicle. In this
incident, due to a cut-in of a new traffic participant, the vehicle
Bnew , the lateral safe distance between the ego vehicle ego and
the vehicle Bnew is not respected. If the ego vehicle cannot take
measures in time, a collision may occur, which will eventually
trigger the security officer’s human intervention.

In the above case, the ego vehicle should detect other vehicles
within a certain range that do not respect the lateral safe require-
ments, and take feasible measures in time to increase the lateral
safe distance and eliminate the risk of collision. Within a certain
range here, from the traffic laws and the perspective of human
driving, when considering the lateral safe distance, the vehicle
should be at the same level and in front. It also inspired by the
longitudinal safe distance, the safe distance mainly depends on
the following vehicle B f . If each following vehicle pays atten-
tion to keeping a safe distance from its leading vehicle, then the
following vehicle B f will be responsible for the collision. There-
fore, a successful system for self-driving cars should have the
ability to respond in time, when new traffic participants appear
and interfere with the predicted behavior of the ego vehicle.

The safe distance of the ego vehicle with respect to the
new traffic participant is flexibly set according to the type of
the specific participant. Our safety framework for new traffic
participant here mainly takes vehicles as an example, so the
safe distance mentioned here is the new longitudinal and lat-
eral safe distance mentioned in Section 3.1. For pedestrians,
the corresponding safe distance can be set in combination with
the pedestrian behavior prediction model, which is also our
future work.

An incident of correcting the steering angle of Didi’s self-
driving car is also a sudden incident about new traffic partici-
pants not being “passed”, which inspired us to face the chal-
lenge. In order to solve this problem, we propose the following
strategy.

a) When a vehicle Bnew as the new vehicle participant operates
accidentally (brakes too late and cannot reverse), it may trig-
ger a collision. The ego vehicle should evade in time to pro-
tect itself, adjust the (lateral or longitudinal) distance with the
vehicle Bnew to maintain a safe distance. Because the vehicle
Bnew cannot reverse at this time, it can only be supplemented
by the ego vehicle.

b) If the roles are reversed and the ego vehicle is in the posi-
tion of the vehicle Bnew , first keep the lateral safe distance,

FIGURE 5 A verification framework for new traffic participant

and then keep the longitudinal safe distance. Note that when
the ego vehicle merges into the target lane after turning, the
required safe distance dsa fe between the ego vehicle and the
following car B f in the target lane must be respect.

In actual traffic, these traffic participants may be children
playing on the side of the road, pedestrians or animals who want
to cross the road, or goods scattered from the leading vehicle.
These various traffic participants who are difficult to predict
their activity trajectories bring difficulties to safety verification.
To overcome these difficulties, we propose a verification frame-
work for new traffic participants (shown in Figure 5), which can
track new traffic participants with different safe distances and
issue an early warning to avoid potential collisions when the
current conditions cannot satisfy the minimum safe distance.
For our own verification, we assume that if the maneuver is
proven formally safe w.r.t. our safety conditions and a collision
has occurred nonetheless, another vehicle must be liable. For
a new traffic participant, the safe distance between it and the
ego vehicle is first checked whether it is satisfied. For unsatis-
factory situations, the framework continues to track whether
the self-driving system takes feasible measures to restore the
safe distance. If the safe distance between the two vehicles is
restored successfully, we still believe that the behavior of the
system is safe. However, if it cannot be restored and exceeds the
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minimum safe distance, we consider the behavior of the system
to be unsafe and issue an early warning to avoid potential col-
lisions. Different from general verification methods that only
focuses on collision avoidance, we investigate the sensitivity,
resilience and implementability of handling dangerous situations
according to the reaction time and the measures of the self-
driving system in the verification. These assessments can better
reflect deficiencies of the self-driving system, and can provide
guidance for subsequent improvements to this system in the
future.

4 SAFETY FRAMEWORK

The system for self-driving car outputs the steering angle, accel-
eration and braking. We consider correct behavior safety for
prediction outputs. In Section 3, we discuss the five aspects
of the longitudinal safe distance, the lateral safe distance, lane
change maneuvers, overtaking and how to face new traffic par-
ticipants for self-driving car in detail. We set the safety require-
ments involved in those five aspects as safety conditions, and
then apply these safety conditions to the verification framework
we proposed as shown in Figure 6.

Our safety verification framework starts from prediction out-
puts of the self-driving vehicle and detects whether the cur-
rent state of the ego vehicle satisfies safety conditions. If safety
conditions are satisfied, the current behavior is considered to
be temporarily safe. For unsatisfied situations, the framework
further checks whether the ego vehicle takes feasible measures
(such as decelerating) for satisfying the safety conditions. If
safety conditions are satisfied by taking effective measures dur-
ing the follow-up tracking, the current behavior of the ego vehi-
cle is considered to be temporarily safe. However, if the safety
conditions are unsatisfied after measures are taken all the time,
once the ego vehicle no longer takes any feasible measures, the
framework checks whether its current state satisfies the mini-
mum safe distance. When the minimum safe distance is unsatis-
fied, the current behavior is considered unsafe. When it is satis-
fied, the framework detects whether the ego vehicle performs
emergency braking. If emergency braking is not performed,
the behavior is considered unsafe. If emergency braking is per-
formed and the collision is avoided, the behavior is still consid-
ered safe. If a collision occurs after the emergency braking is
performed, further safety analysis is required to determine who
is responsible. If the ego vehicle respects all traffic rules, it will
not be responsible for the collision. If it is the responsibility of
the ego vehicle, the behavior is considered unsafe. The judg-
ment of liability here is mainly based on traffic rules. For exam-
ple, the following vehicle or a vehicle that is suddenly inserted
laterally collides with the host vehicle, which is the responsibility
of other vehicles.

In the existing work, as long as the self-driving car dissatis-
fies current safety conditions, its predicted behavior is directly
judged as unsafe. However, in our framework, we will continue
to track the self-driving car until it reaches the limit of safety
condition (the strictest safety condition). If the self-driving car
take some measures to alleviate the current situation until safety

conditions are finally satisfied, we believe that the predicted
behavior is still safe. Therefore, compared with existing meth-
ods, our framework is slack. In addition, in our online ver-
ification process, we set 5 parameters (the rationality of the
planned trajectory, the accuracy of the prediction model, the
implementability, the resilience and the sensitivity), which can
mark these different responses of the self-driving car and non-
compliance with safety requirements. These parameters can be
used to evaluate the performance of self-driving systems, and
can be used to guide trajectory planning or evaluate the accu-
racy of behavior predictions in the future.

Our framework applies formal verification methods to prove
the correctness of the vehicles’ behavior. However, it does not
mean that if a vehicle unsatisfies the safety conditions in our
framework, a collision is bound to occur. Our safety conditions
describe whether the ego vehicle is at risk of collision. For exam-
ple, if the ego vehicle unsatisfies the safety conditions with the
leading vehicle, the behavior of the vehicle at this time is unsafe.
Since once the leading vehicle brakes urgently and the ego vehi-
cle cannot change lanes, a collision will definitely occur. How-
ever, if the preceding vehicle does not brake but keeps moving,
the ego vehicle will not collide with the leading vehicle.

Moreover, the ability to cooperate with other vehicles is
reflected in whether the ego vehicle interferes with other vehi-
cles’ execution of the scheduled planned route. For example,
when the leading vehicle Bl performs a lane change, whether
the ego vehicle decelerates and respects a safe distance to the
leading vehicle Bl (at least not accelerate until the leading vehi-
cle Bl completely passes the lane line); or when the vehicle B j

in the adjacent lane has transferred a lane change command,
whether the ego vehicle respects a safe distance by deceleration
or becomes the leading vehicle of B j by acceleration to support
this lane change.

5 EXPERIMENTAL RESULTS

The presented longitudinal safe distance has been evaluated on
a data-set of recorded traffic from the NGSIM project [23] to
investigate the safety of human driven lane changes. The data-
set contains the position, speed, acceleration, and respective
lane of vehicles driving on US Highway 101. Data collection
time was between 7:50 a.m. and 8:35 a.m. with a granularity
of Δt = 0.1s. The study area is 640 m long and consists of
five lanes.

We assumed a maximum absolute acceleration of amax = 8
m/s2 per vehicle and a maximum velocity of vmax = 16.67 m/s.
Furthermore, we make use of the safe distance extension to take
different reaction times into account, assuming 𝛿human = 1.0 s
for humans and 𝛿machine = 0.3 s for self-driving cars [24]. The
safety evaluation on the longitudinal safe distance of following
and leading vehicles has been implemented using forward sim-
ulation of the vehicles’ initial state.

NGSIM data not only includes the current vehicle’s position,
speed and acceleration, but also includes the lane and the IDs
of the leading and following vehicles in the same lane. The
speed, acceleration, and position of these vehicles can be easily
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FIGURE 6 A verification framework for self-driving car

obtained from these vehicle IDs. First, the vehicle’s IDs whose
lane has changed are found by searching the NGSIM data.
Then, the approximate lane change time is locked according
to the position change of the vehicle and the corresponding
time. During the lane change time, we track these information
of the leading and following vehicles in the lane where the
lane changing vehicle is located. Finally, these longitudinal
safe distances of the leading and following vehicles are cal-
culated to check whether these safe distances are satisfied.
If the safe distance is not satisfied during the lane change,
report it.

Table 3 highlights the evaluation results of N = 1341 total
longitudinal safe distances for different reaction times. In terms
of 𝛿 = 0.0 s, an average of 85.39% of the lane changes are clas-
sified as safe. This number will decrease to 75.81% if 𝛿machine

is used. Considering that the vehicles in the data-set are con-
trolled by humans, only 54.15% of the lane changes are classified
as safe.

TABLE 3 Percentage of the longitudinal safe distances between the ego
vehicle and the leading (or following) vehicle for various reaction times

Data-set n 𝜹 = 0.0s 𝜹machine = 0.3s 𝜹human = 1.0s

7:50–8:05 531 86.25% 75.52% 62.52%

8:05–8:20 410 83.17% 73.41% 53.17%

8:20–8:35 400 86.75% 78.5% 52.75%

To evaluate the longitudinal safe distance between the ego
vehicle and B f under no leading vehicle Bl , we again analyzed
the evaluation results of N = 1341 total safe distances between
the ego vehicle and the following vehicle for different reaction
times in Table 4. In terms of 𝛿 = 0.0 s, an average of 69.76% of
the lane changes are classified as safe. The percentage increases
to 70.14% if 𝛿machine is used. Considering that the ego vehicle and
its following vehicle in the data-set are controlled by humans,
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TABLE 4 Percentage of the longitudinal safe distances between the ego
vehicle and the following vehicle for various reaction times

Data-set n 𝜹 = 0.0 s 𝜹machine = 0.3 s 𝜹human = 1.0 s

7:50–8:05 87 71.26% 72.41% 72.41%

8:05–8:20 17 76.47% 76.47% 76.47%

8:20–8:35 13 61.54% 61.54% 61.54%

FIGURE 7 The ego vehicle follows its leading vehicle Bl on the same lane
(a). The leading vehicle Bl decelerates suddenly, and the ego vehicle respects a
safe distance to the vehicle Bl by performing deceleration until Bl stops (b)

also 70.14% of the lane changes are classified as safe. We find
that the average percentage for the response time for humans
or self-driving cars is higher than the corresponding average per-
centages in Table 3. It shows that the safe distance without any
leading vehicle is sometimes satisfied, but it has been mistakenly
regarded as unsatisfied by the same safe distance requirement as
the leading vehicle.

We used a proof-of-concept implementation of online ver-
ification to check behavioral safety of self-driving cars on the
CARLA [25], which is an open-source simulator for self-driving
research. Our framework is implemented partly in Python and
runs on a computer with an Intel i7 3.2GHz processor and
32GB memory. We build seven urban scenarios by CARLA to
demonstrate the benefits of our framework. It takes about 1–
37 s for the framework to work on an urban scenario. Regard-
ing the memory, the computer we use is 32G memory, and the
memory usage at runtime is 13.9% (4.3G) - 14.2% (4.4G). To
increase credibility, We repeated 100 times for each scenario.
For seven scenarios, we set the maximum absolute acceleration
and deceleration of vehicles to |amax,l |=8 m/s2 and |amax,l |=7
m/s2, respectively.

An urban scenario, in which the leading vehicle suddenly
slows down until it stops, is shown in Figure 7. In this sce-
nario, the ego vehicle remains safe by executing the calculation
and inspection of the longitudinal safe distance in our verifi-
cation framework. In fact, until both the leading vehicle and
the ego vehicle stop, the safe distance between the two vehicles
is maintained. It shows that the self-driving system can sensi-
tively detect the deceleration of the leading vehicle and respect
the safe distance. In fact, there is another optimization strat-
egy, which lets the ego vehicle change to the adjacent shoul-
der lane to certainly avoid a collision. It shows that the self-
driving system lacks the flexibility of motion planning. In the
repeated experiment of this scenario, we found that the two
vehicles stopped at other intersections as shown in Figure 8a

FIGURE 8 The ego vehicle and its leading vehicle Bl stopped at other
intersections (a). the two vehicles were driving in different directions when they
encountered a green light at the intersection (b)

and the two vehicles were driving in different directions when
they encountered a green light at the intersection as shown in
Figure 8b.

Figure 9a shows the initial urban scenario, in which the ego
vehicle is leading vehicle. The initial distance between the ego
vehicle and the following vehicle maintains the safe distance.
The intended trajectory of the ego vehicle is planned by the
CARLA’s self-driving system, and the following vehicle B f

accelerates at a constant acceleration. However, the ego vehicle
as the leading vehicle of the following vehicle B f did not take
any measure to avoid a potential collision, such as accelerating
to respect a safe distance to the following vehicle B f or chang-
ing lanes. Finally, the following vehicle B f lead to a potential
collision as shown in Figure 9c. It is a typical example showing
that the CARLA’s self-driving system predicts unsafe behavior
for motion planning. If the ego vehicle respects our proposed
new minimum safe distance to the following vehicle, it can
completely maintain a safe distance by accelerating without
changing lanes to avoid a collision. In the repeated experiment
of this scenario, we found some new scenarios as shown in
Figure 10 where some sensitive parameters changed. We ana-
lyzed that the difference in the speed of the following vehicle
in the simulator caused the change in the parameters of the
framework.

The lateral distance between the ego vehicle and the adja-
cent vehicle B j is less than the minimum lateral safe distance as
shown in Figure 11a. In this scenario, the current state of the
ego vehicle is unsafe by executing our verification framework.
To avoid a potential collision, the ego vehicle should take mea-
sures to restore a safe distance with the adjacent vehicle B j . Fig-
ure 11b shows the planned trajectory, which lets the ego vehicle
swerve to the adjacent shoulder lane to restore the lateral safe
distance and certainly avoid a collision. From the final scene Fig-
ure 11c, the ego vehicle and B j have recovered the lateral safe
distance. It shows that the CARLA’s self-driving system is still
more sensitive to the lateral distance and responds quickly.

Finally, we focus on new traffic participants suddenly
appeared that affect original motion plans of the ego vehicle.
In an urban scenario as shown in Figure 12a, the ego vehicle
drives on a predetermined planned route. However, at an inter-
section, a new vehicle appears suddenly and crosses the road.
The ego vehicle decelerates to give way to the new traffic partic-
ipant, which reflects the self-driving system’s ability to cooperate
with other vehicles. Finally, the ego vehicle smoothly becomes
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FIGURE 9 The following vehicle B f follows the ego vehicle on the same lane (a). The following vehicle B f suddenly accelerates and the distance between two
vehicles gradually decreases, but the ego vehicle did not accelerate according to the original prediction (b). Eventually, the following vehicle B f collides with the ego
vehicle (c)

FIGURE 10 The sensitivity parameter is 0 (a). The sensitivity parameter is 2 (b). The sensitivity parameter is 4 (c)

FIGURE 11 The ego vehicle is adjacent to the adjacent vehicle B j (a). The ego vehicle swerve to the adjacent shoulder lane to certainly avoid a collision (b).
The ego vehicle recovers the lateral safe distance with the adjacent vehicle B j by executing the predicted trajectory of CARLA’s self-driving system (c)

FIGURE 12 The ego vehicle intends to continue across the intersection
(a). However, the new vehicle suddenly crosses the target lane of the ego
vehicle (b). The ego vehicle decelerates to give way to the new traffic
participant (c). The ego vehicle smoothly becomes the following vehicle of the
new vehicle (d)

FIGURE 13 There is a faulty vehicle parked at an intersection, in front of
the ego vehicle. (a). The ego vehicle respects a safe distance to the faulty
vehicle by performing braking (b)

the following vehicle of the new vehicle and respects a safe dis-
tance to it (see Figure 12d).

Figure 13a shows the initial urban scenario, in which the
ego vehicle drives on a predetermined planned route. Another
faulty vehicle stopped at the intersection ahead, and the rear of
the vehicle went beyond the lane line where its own lane was
located, but it would not affect the driving of other vehicles.
The ego vehicle finally regards the faulty vehicle as the lead-
ing vehicle and brakes as shown in Figure 13b. It shows that



16 WU ET AL.

FIGURE 14 The ego vehicle performs a right turn (a). The ego vehicle
respects a safe distance to the faulty vehicle by performing braking (b)

FIGURE 15 There is a faulty vehicle in front of the ego vehicle parked at
an intersection, and the ego vehicle was driving on the right-turn lane (a). The
ego vehicle respects a safe distance to the faulty vehicle by performing braking
(b)

the CARLA’s self-driving system is still sensitive to the longi-
tudinal distance and responds quickly. The scene is similar to
the corrected steering angle incident of Didi’s self-driving vehi-
cle. Unfortunately, The Carla’s self-driving system did not adopt
a steering method to increase the lateral safe distance to com-
plete overtaking.

The ego vehicle may not be able to detect the new traffic
participant in time because of its visual field as shown in Fig-
ure 14a. In this urban scenario, after the ego vehicle is turning,
it encounters another vehicle that failed during the lane change
and was stuck in the middle of two lanes. The ego vehicle may
not be able to detect the new traffic participant in time because
of its visual field before turning, but it finally regards the new
traffic participant as the leading vehicle and performs braking
from Figure 14b.

Figure 15a shows the initial urban scenario, in which the loca-
tion of the faulty vehicle is the same as that of the urban scenario
Figure 13, except that the ego vehicle is in the lane turning right.
The ego vehicle finally regards the faulty vehicle as the leading
vehicle and brakes. However, based on the driving experience
of the human driver from the location of the faulty vehicle, the
ego vehicle has a chance to complete the turn by re-steering. It
reflects the lack of flexibility of the system in motion planning.

To reflect the performance of self-driving cars on prediction
behaviors in different scenarios, five parameters (the rationality
of the planned trajectory, the accuracy of the prediction model,
the implementability, the resilience and the sensitivity) are set in
our verification framework. These parameters are used to iden-
tify the different reactions of self-driving cars in common driv-
ing scenarios and to detect non-compliance cases with safety
requirements. These parameters obtained in the above seven
scenarios are shown in Table 5. We repeated 100 times for each

of seven scenarios conducted with CARLA. Each evaluation
parameter is averaged. From Table 5, it can be seen that the
Carla’s self-driving system is more sensitive to the leading car,
the adjacent car, and the car suddenly appearing at the fork in
the simulation environment, but there are defects in the interac-
tion with the following car. These parameters can be used to
evaluate the performance of self-driving systems, and can be
used to guide trajectory planning or evaluate the accuracy of
behavior predictions in the future.

6 RELATED WORK

The safety for self-driving cars is recognised an important prob-
lem [26]. Therefore, many safeguarding approaches for the
domain of self-driving cars have been proposed. One approach
to guarantee safety is to examine the system under test offline,
before actual usage [27]. Model-checking or branches of modal
logic are used to guarantee accordance with a specified behavior.
However, frequent software updates and online machine learn-
ing methods cannot be properly handled by these approaches,
since the system may change post-examination.

Another approach is to monitor the system online to enhance
the level of safety [28]. One group of approaches uses prob-
abilistic metrics [29–31] to determine a collision probability
or empirical performance indicators [32] resulting in a safety
rating for the vehicle under test. However, a sufficient safety
assurance cannot be provided based on these metrics. Further-
more, some of the trained models might extend to complex
realizations, that cannot be approved themselves [33]. By con-
trast, methods relying on formal and deterministic fundamen-
tals can provide guarantees based on imposed requirements.
Among them are reachable sets [5, 34, 35], runtime verifica-
tion [36], and metric-based approaches [37], including the RSS
model [17]. However, some of these approaches tailored to a
specific software lack flexibility and cannot be bundled with
other software components or approaches. Furthermore, all of
these approaches have in common, that they focus on selected
safety aspects (e.g. dynamic collision detection) and do not
strive for a holistic online verification with the goal of safety
approval [33].

There are methods relied on switching among several operat-
ing modes. In [38], the authors proposed an integrated control
strategy for adaptive cruise control with auto-steering for
highway driving. An appropriate logic-based control strategy
is used to create synergies and safe interaction between lon-
gitudinal and lateral controllers to obtain both lateral stability
and advanced adaptive cruise control functionalities. How-
ever, methodical integration of longitudinal adaptive cruise
control strategies and of lateral control strategies is to a large
extent missing, as well as validation in real-time computing
environment of the safety and performance of longitudinal
and lateral integrated solutions. Therefore, in [39], the authors
proposed a real-time validation of an integrated vehicle dynamic
control strategy, designed to create safe interaction between
longitudinal and lateral controllers: the integrated system is
designed, implemented and tested through Dynacar, a real-time
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TABLE 5 Parameters used to evaluate self-driving cars in seven scenarios

Scenario Plan rationality Model accuracy Sensitivity Implementability Resilience

1 1 1 0 0 0

2 0 −1 1.3 0 −1

3 1 1 0 0 0

4 1 1 0 0 0

5 2 2 0 0 0

6 2 2 0 0 0

7 2 2 0 0 0

simulation environment for the development and validation of
vehicle embedded functionalities.

The authors of [5] propose a safety framework to verify the
safety of each planned trajectory on-the-fly, using formal meth-
ods to handle uncertain measurements and future behaviors of
traffic participants and disturbances acting on the ego vehicle,
among others. The framework is composed of modules for set-
based prediction, fail-safe trajectory generation, and online veri-
fication. In case of any malfunction, where new trajectories can-
not be obtained during run-time, the self-driving car remains
safe, since it can just execute the previously verified fail-safe tra-
jectory which is stored on a redundant memory.

In a recent paper [40], the authors propose an autonomous
driving system (ADS) verification framework, which can effi-
ciently support cost-effective simulation by means of the func-
tional mock-up interface (or the data distribution service) and
cloud computing. By testing whether the verification of the
ADS in the simulation environment is accurate and whether the
distributed simulation is interworked, it can compare the differ-
ence between the ADS made for the experiment and the ideal
ADS, and confirm that the interworking test is also accurate.

7 CONCLUSION AND FUTURE WORK

We presented a novel framework for verifying behavioral safety
of self-driving cars online. The technique is based on our
proposed five safety considerations: new longitudinal and lat-
eral safe distances, lane changes, overtaking and how to face
new traffic participants. Different from the previous verifica-
tion considerations, our verification framework allows predicted
behaviors (i.e., prediction outputs) of self-driving cars to be
temporarily inconsistent with the popular strict safe distance.
As long as the self-driving car respects the minimum safe dis-
tance calculated by our technique and executes improvement
behaviors to restore the safe distance, we still believe that the
predictive behavior is safe. To evaluate the self-driving system,
when we detect whether the predicted behavior satisfies safety
standards and take effective measures under unsafe conditions,
we introduce five weighted indicators, which may be used to
improve this system in the future. Our success in verifying prop-
erties of some urban scenarios in CARLA indicates that the
technique has great potential in verifying behavioral safety of

real-world self-driving cars. Since our framework is independent
of the utilized planning framework, it can easily be integrated in
existing vehicle frameworks.

In a next step, we plan to increase the technique’s scalabil-
ity. Specifically, we will explore the combination of our frame-
work and pedestrian’s behavior prediction model or vehicle-
following model. Apart from improving the safety conditions
applied in our framework, we plan to explore better strategies
for the optimization of self-driving cars according to the weight
in the framework.
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