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 A B S T R A C T

Modern cyber–physical systems (CPS) are evolving to integrate deep neural networks (DNNs) as controllers, 
leading to the emergence of AI-enabled CPSs. An inadequately trained DNN controller may produce incorrect 
control actions, exposing the system to safety risks. Therefore, it is crucial to localize the faulty neurons of the 
DNN controller responsible for the wrong decisions. However, since an unsafe system behavior typically arises 
from a sequence of control actions, establishing a connection between unsafe behaviors and faulty neurons 
is challenging. To address this problem, we propose Tactical that localizes faults in an AI-enabled CPS by 
exploiting temporal neuron activation criteria that capture temporal aspects of the DNN controller inferences. 
Specifically, based on testing results, for each neuron, Tactical constructs a spectrum, which considers the 
specification satisfaction and the evolution of the activation status of the neuron during the system execution. 
Then, starting from the spectra of all the neurons, Tactical applies suspiciousness metrics to compute a 
suspiciousness score for each neuron, from which the most suspicious ones are selected. We assess Tactical
configured with eight temporal neuron activation criteria, on 3504 faulty AI-enabled CPS benchmarks spanning 
over different domains. The results show the effectiveness of Tactical w.r.t. a baseline approach.
1. Introduction

Cyber–physical systems (CPSs) refer to systems that apply computer 
technologies to control the behaviors of physical plants. CPSs emerge 
in different safety-critical application domains, such as transportation, 
healthcare, robotics, and smart grids. Recently, modern CPSs (e.g., au-
tonomous driving (Bojarski et al., 2016) and robotics (Gu et al., 2017)) 
are increasingly adopting deep neural networks (DNN) as controllers for 
decision making, leading to the emergence of AI-enabled CPSs (Man-
zanas Lopez et al., 2023; Johnson et al., 2020; Tran et al., 2019; Huang 
et al., 2019; Tran et al., 2020; Zhang et al., 2023). DNN controllers have 
shown to provide different advantages w.r.t. classical controllers (Song 
et al., 2022), such as the ability to interact with complex environments 
and make complex decisions. With the continuous evolution of AI 
technologies, AI-enabled CPSs are expected to be increasingly adopted 
in the future.

However, despite all their performance advantages, the safety of AI-
enabled CPSs constitutes a serious concern. Indeed, the DNN controller 
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could produce some unexpected erroneous control actions, which could 
expose the whole system to huge safety risks. In safety-critical applica-
tion domains, such as autonomous driving systems, these malfunctions 
can lead to catastrophic social and economic losses.

To prevent unsafe behaviors from happening, it is important to 
localize the faulty components in DNN controllers; specifically, in this 
paper we target neurons, and we consider a neuron faulty if it is not 
well-tuned, to the point of leading to failures of the whole system. Such 
neurons should be later fixed by approaches like DNN repair (Sohn 
et al., 2023; Li Calsi et al., 2023b,a; Ren et al., 2022; Henriksen et al., 
2022; Tokui et al., 2022; Sun et al., 2022) to remove the wrong DNN 
behaviors. Different works (Usman et al., 2021; Eniser et al., 2019; 
Sohn et al., 2023; Ghanbari et al., 2023) have addressed the problem 
of DNN fault localization, specifically in the context of classification. In 
those approaches, various neuron activation criteria have been proposed 
to estimate the contribution of a neuron to the final DNN output. Some 
of these approaches use statistical analysis inspired by spectrum-based 
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fault localization (SBFL) (Wong et al., 2016) to establish a correlation 
between incorrect DNN inferences and faulty neurons.

However, existing fault localization approaches are not applicable to 
DNNs used in AI-enabled CPSs. Indeed, existing DNN fault localization 
approaches have features that are not available in AI-enabled CPSs: the 
DNN is analyzed in isolation, tests are constituted by single inferences 
of the DNN, and an oracle is available to assess the expected classifi-
cation. So, we identify three main challenges to do fault localization of 
DNN controllers of AI-enabled CPSs:

• Non-modularity : The DNN controller cannot be analyzed in isola-
tion, but it can only be observed when it operates as a component 
of the whole system and interacts with the plant.

• Temporal decision logic: The decision logic of the DNN controller is 
not due to single inferences, but to sequences of inferences during 
the system execution.

• Lack of ground truth: There is no ground truth for the DNN 
controller, i.e., it is difficult to directly decide whether a sequence 
of control actions is appropriate for the control task.

Contributions. To tackle the three above challenges, we propose the 
framework Tactical (Temporal ACTIvation-based Ai-Cps fault
Localization), to localize the faulty neurons in DNN controllers that are 
responsible for the unsafe system behaviors of an AI-enabled CPS. Two 
key elements of Tactical that allow to tackle the above challenges are:

• As the control task is due to sequences of DNN inferences (chal-
lenge ‘‘temporal decision logic’’ described above), we need to cap-
ture the different ways in which a DNN controller can operate 
over time; specifically, we need to identify when the neurons 
contribute to the control decisions. To do this, Tactical employs 
eight temporal neuron activation criteria, that have been adapted 
from coverage criteria proposed for AI-enabled CPSs (Zhang et al., 
2023). Such criteria define patterns of activation of the neurons 
over time; for example, time persistent activation criteria define 
patterns in which one or more neurons are constantly activated 
over a period of time, possibly identifying a constant control 
action; time differential activation criteria, instead, define patterns 
in which a neuron increases/decreases its activation rapidly in 
a short period of time, possibly identifying a control action that 
must be applied only for a short period of time. The intuition 
of Tactical is that sequences of control actions happen when 
the neurons manifest one of the criteria; thus, to detect faulty 
neurons, we analyze neurons when they are activated according 
to the criteria.

• Since there is no ground truth for the DNN inferences (challenge 
‘‘lack of ground truth’’ described above) and so the DNN cannot 
be assessed in isolation (challenge ‘‘non-modularity ’’ described 
above), we assess their correctness by checking whether they 
trigger correct or wrong behaviors of the plant. We do this by 
checking the satisfaction of a system-level specification written 
in Signal Temporal Logic (STL) (Donzé and Maler, 2010), that 
predicates about the correctness of the whole AI-enabled CPS.

Specifically, Tactical works as follows. The approach takes in input 
a test suite 𝑇𝑆, a specification 𝜑, and a temporal neuron activation 
criterion 𝖢𝗋 (which, as explained above, is used to identify whether 
a neuron is activated). Given the execution of each test case 𝐮 of the 
test suite 𝑇𝑆, Tactical first checks whether 𝐮 satisfies or violates the 
system specification 𝜑; in case of violation, it identifies the moment 𝜏
in which the violation episode starts. Then, for each neuron 𝐧, it checks 
whether it is activated according to criterion 𝖢𝗋 during the execution 
of 𝐮. In case of a failing test case, the criterion is checked only before 
the beginning of the violation episode; this is done to detect a possible 
causal relationship between the DNN controller’s behavior captured 
by the coverage criterion and the specification violation. Then, for 
each neuron 𝐧, Tactical constructs a spectrum that considers how many 
2 
times 𝐧 was activated or not (according to 𝖢𝗋) in passing and failing 
tests. Using the spectra, Tactical computes a suspiciousness score for 
each neuron, which tells the likelihood that a neuron is responsible 
for the unsafe system behaviors. The top 𝑠 neurons having the highest 
suspiciousness scores are returned.

The neurons returned by Tactical can be later used to improve the 
DNN controller using, for example, a repair approach like the search-
based repair technique proposed in Lyu et al. (2024). We will show this 
application in our experiments in Sections 6 and 7.

To summarize, our main novel contributions are as follows:

• We establish eight temporal neuron activation criteria that assess 
whether a neuron contributed to the system behavior; while 
the criteria were originally proposed for testing, this is the first 
work that uses them for fault localization. We investigate which 
criterion is more effective in characterizing behaviors that are 
correlated with system failures, and, therefore, is more suitable 
for fault localization;

• We propose the fault localization framework Tactical that exploits 
the temporal neuron activation criteria to establish a connection 
between neurons and unsafe system behaviors; while existing 
DNN fault localization approaches assess single inferences of a 
DNN, Tactical assesses sequences of DNN inferences. Moreover, 
since there is no ground truth for control decisions of the DNN 
controller, their correctness is assessed by checking a specification 
that predicates over the whole system;

• We experimentally evaluate the effectiveness of Tactical over 
3504 faulty benchmarks, and the results show that Tactical can 
successfully localize the artificial faults injected to the DNN con-
trollers. We further show that the neurons identified by Tactical
can be effectively used to repair the DNN controller.

Paper structure. Section 2 provides the necessary background. Sec-
tion 3 provides an overview of the approach, that is described in details 
in Sections 4 and 5. Section 6 introduces the design of the experiments, 
and Section 7 discusses experimental results. Then, Section 8 discusses 
threats that may affect the validity of the approach. Finally, Section 9 
reviews related work, and Section 10 concludes the paper.

2. Preliminaries

2.1. AI-enabled cyber–physical systems

Definition 1 (AI-enabled CPS). An AI-enabled CPS  consists of a 
DNN controller  and a physical plant , as shown in Fig.  1. At a time 
instant 𝑡, the controller  receives as input 𝐱(𝑡), which consists of an 
external signal 𝐮(𝑡) and the plant state 𝐲(𝑡), and outputs a control action
𝐜(𝑡) to trigger the state evolution of the plant . On the side of plant 
, the state evolution �̇�(𝑡) at time 𝑡 is decided by both the plant state 
𝐲(𝑡) and the control action 𝐜(𝑡). Overall, the whole system  maps an 
input signal 𝐮 to an output signal 𝐰, where 𝐰 involves the plant state 
variables in 𝐲 that are observable from external environment. ⊲

Note that we consider DNN controllers specifically for decision mak-
ing (e.g., accelerate/decelerate, steering), and not for other activities 
involved in control such as perception; indeed, these latter DNNs can 
be tested and debugged in isolation by several approaches (Ma et al., 
2018a; Sohn et al., 2023; Zhang et al., 2022).

Example 1.  We use the Adaptive Cruise Control (ACC) system (later 
introduced in Section 6.2) to illustrate the operation of an AI-enabled 
CPS. ACC is an advanced control system that automatically adjusts 
the speed of a vehicle (ego car) to maintain a safe distance from the 
preceding vehicle (lead car), as shown in Fig.  1(b). The ego car is 
considered as the plant, i.e., the physical actuator in the system. The 
lead car is considered as the surrounding environment, and its speed 
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Fig. 1. AI-enabled CPS model and an example ACC.
and position perceived by the ego car are treated as external input 
signal 𝐮(𝑡) of ACC. The signal 𝐲(𝑡) fed back from the plant is the speed 
and position of the ego car. The two signals are combined into 𝐱(𝑡) as 
the input sent to the controller  for decision making. The controller 
 outputs a control action 𝐜(𝑡) back to the plant to actuate its state 
evolution. The output signal 𝐰(𝑡) of the system involves the position of 
the ego car, by which the relative distance between the two cars can 
be computed. ⊲

In an AI-enabled CPS, the DNN controller serves as the central com-
ponent determining the system’s evolution. In this paper, by following 
related literature (Tran et al., 2020; Katz et al., 2017; Yang et al., 2022; 
Zhang et al., 2023), our focus is on fully connected DNNs, defined as 
follows. 

Definition 2 (DNN Controller). A DNN controller  is a fully-connected 
DNN that consists of an input layer, an output layer, and 𝐿 hidden layers. 
At each timestamp,  takes as input a vector ⃗𝑥 from the input layer, and 
computes an output 𝑐 as the control decision at the output layer. Each 
hidden layer consists of 𝐽𝑖 (𝑖 ∈ {1,… , 𝐿}) neurons. Given �⃗� as the input 
for , a neuron 𝐧𝑖𝑗 (𝑖 ∈ {1,… , 𝐿}, 𝑗 ∈ {1,… , 𝐽𝑖}) at the 𝑖th layer outputs 
𝜙𝐧𝑖𝑗 (�⃗�) ∈ R, by taking as input the neuron output 𝜙𝐧(𝑖−1)𝑗′ (�⃗�) from the 
neurons at the (𝑖 − 1)th layer, as follows: 
𝜙𝐧𝑖𝑗 (�⃗�) = 𝜎

(

𝑏 +
∑𝐽𝑖−1

𝑗′=1 𝜔𝑗′ ⋅ 𝜙
𝐧(𝑖−1)𝑗′ (�⃗�)

)

(1)

where 𝜔𝑗′ ∈ R is a weight (which is the 𝑗′th component of the weight 
vector 𝜔 ∈ R𝐽𝑖−1  for the neuron 𝐧𝑖𝑗) and 𝑏 ∈ R is the bias for the neuron 
𝐧𝑖𝑗 , and 𝜎 is a non-linear function known as activation function. Common 
choices of activation function 𝜎 include ReLU, sigmoid, tanh, etc. The 
output 𝑐 of the DNN controller  is computed by taking a weighted sum 
of the neuron outputs 𝜙𝐧𝐿𝑗 (�⃗�) (𝑗 ∈ {1,… , 𝐽𝐿}) at the last hidden layer. 
⊲

2.2. System specification

A specification serves as a formal description of a system’s ex-
pected behavior. It plays a crucial role in defining the conditions 
that a system must meet, encompassing functionalities, constraints, 
performance expectations, safety requirements, etc. Specifications are 
typically expressed in formal languages, ensuring accuracy, clarity, and 
verifiability. In this context, the systems presented in this paper adopt 
the widely recognized Signal Temporal Logic (STL) (Donzé and Maler, 
2010), renowned for its expressivity for continuous dynamic system 
properties. Below, we overview STL syntax and semantics.

Definition 3 (STL Syntax). Let �⃗� ∈ R𝑑 be a vector. In STL, an atomic 
proposition is represented as 𝛼 ∶≡ (𝑓 (�⃗�) > 0), in which 𝑓 ∶ R𝑑 → R is a 
function that maps �⃗� to a real number. The syntax of an STL formula 
𝜑 is defined as follows:
𝜑 ∶≡ 𝛼 ∣ ⊥ ∣ ¬𝜑 ∣ 𝜑1 ∧ 𝜑2 ∣ 𝜑1 ∨ 𝜑2 ∣ □𝐼𝜑 ∣ ◊𝐼𝜑 ∣ 𝜑1𝐼𝜑2

Here, 𝐼 is a time interval [𝑎, 𝑏], where 𝑎, 𝑏 ∈ R and 𝑎 < 𝑏. □𝐼 , ◊𝐼 , 
  are temporal operators always, eventually, and until, which allow to 
𝐼

3 
express complex temporal properties. The syntax of STL defines a set 
of rules by which one can decide whether an STL formula is valid. ⊲

The (Boolean) semantics (Fainekos and Pappas, 2009; Donzé and 
Maler, 2010) of STL characterizes the satisfaction condition for a signal 
𝐰 to an STL specification 𝜑. We introduce the formal definition of STL 
semantics.

Definition 4 (STL Semantics). Given a system output signal 𝐰 and an 
STL specification 𝜑, STL semantics defines the conditions to determine 
whether 𝐰 satisfies 𝜑 (denoted as 𝐰 ⊧ 𝜑). Formally, the satisfaction 
of 𝜑 by 𝐰 can be determined by checking the following conditions 
recursively:

𝐰 ⊧ 𝛼 ⟺ 𝑓
(

𝐰(0)
)

> 0 𝐰 ⊧ ¬𝜑 ⟺ 𝐰 ̸⊧ 𝜑

𝐰 ⊧ 𝜑1 ∧ 𝜑2 ⟺ 𝐰 ⊧ 𝜑1 ∧ 𝐰 ⊧ 𝜑2

𝐰 ⊧ □𝐼𝜑 ⟺ ∀𝑡 ∈ 𝐼. (𝐰𝑡 ⊧ 𝜑)

𝐰 ⊧ 𝜑1𝐼𝜑2 ⟺ ∃𝑡 ∈ 𝐼.
(

𝐰𝑡 ⊧ 𝜑2 ∧ ∀𝑡′ ∈ [0, 𝑡). (𝐰𝑡′ ⊧ 𝜑1)
)

where 𝐰𝑡 denotes the 𝑡-shift of 𝐰, namely, for an arbitrary 𝑡′ ∈ [0, 𝑇 − 𝑡], 
it holds that 𝐰𝑡(𝑡′) = 𝐰(𝑡 + 𝑡′). The semantics of the omitted operators 
can be derived from those of the existing operators, based on their 
syntactic equivalence relations. Intuitively, the semantics of STL defines 
the meaning of different operators. For example, 𝐰 ⊧ □𝐼𝜑 requires 
that 𝐰𝑡 satisfies 𝜑 at each 𝑡 ∈ 𝐼 , and, therefore, this operator can be 
interpreted as ‘‘always’’. ⊲

Example 2.  Consider ACC in Example  1. The specification 𝜑 ≡
□[0,𝑇 ](𝑑𝑟𝑒𝑙 ≥ 10) is an STL formula. In terms of the syntax, the formula 
is defined using a □ operator, nested with an atomic proposition. In 
terms of the semantics, the formula requires that 𝑑𝑟𝑒𝑙 (i.e., the relative 
distance between the ego car and the leading car) is always greater than 
the safe distance 10 during the time interval [0, 𝑇 ], in order to keep the 
system safe. ⊲

3. Overview of the proposed approach

In this section, we introduce the problem that we want to target 
(Section 3.1), and overview the proposed solution (Section 3.2).

3.1. Motivation and problem statement

In this work, we target failures of AI-enabled CPSs. We use Example 
3 to show the main source of system failures.

Example 3.  Consider ACC in Example  1 and its specification given 
in Example  2. Fig.  2 shows the trace of 𝑎𝑒𝑔𝑜, i.e., the acceleration of 
the ego car over time given by the controller; the figure also shows the 
trace of 𝑑𝑟𝑒𝑙 over time, which is the output of the system. We notice 
that the system specification is violated as, at time 𝜏, 𝑑𝑟𝑒𝑙 starts to be 
smaller than the safe distance 10. This can be due to the fact that, in 
the interval [0, 𝜏] preceding the violation, the DNN controller does not 
properly decide to decelerate so to guarantee a safe distance. ⊲
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Fig. 2. An execution that violates 𝜑 ≡ □[0,𝑇 ](𝑑𝑟𝑒𝑙 ≥ 10).

From the previous example, we understand that wrong decisions 
of the DNN controller are responsible for system failures. However, 
due to the opaque inference logic of DNNs, it is hard to know why 
such wrong decisions occurred. As explained in Definition  2, the pro-
cess of decision making for control, i.e., the inference of the DNN 
controller, is primarily decided by the DNN parameters, namely, the
weights and biases in the neurons of DNN controllers. If these parameters 
are inadequately tuned, some neurons will produce erroneous outputs, 
so influencing the overall output of the DNN controller that leads 
to wrong control decisions. Then, these erroneous control decisions 
propagate throughout the system execution, ultimately resulting in 
system failures.

The objective of this paper is to localize those ‘‘faulty neurons’’ 
whose erroneous outputs trigger wrong decisions of the DNN controller 
that lead to system failures. By identifying these faulty neurons, we aim 
to provide engineers with an insight into the root causes of system fail-
ures, aiding them in the improvement of the system by, e.g., automated 
repair.
Problem statement. Given an AI-enabled CPS  equipped with a 
DNN controller , a specification 𝜑, and a test suite 𝑇𝑆, our aim is to 
identify the subset of the neurons in  whose erroneous outputs lead 
to the violation of 𝜑 by  .

3.2. Overview

In this section, we overview our proposed fault localization ap-
proach for DNN controllers. We first review an existing fault local-
ization approach for DNNs from which we take inspiration. Then, we 
explain the limits of this approach and why it cannot be used for fault 
localization of DNN controllers.

3.2.1. DNN fault localization
For classical code, spectrum-based fault localization (SBFL) (Wong 

et al., 2016) is an efficient approach to localize ‘‘suspicious’’ statements 
that are likely to be faulty. Given a test suite and its execution results, 
SBFL builds a spectrum for each statement, telling how often the state-
ment is executed or not in passing and failing tests. Starting from the 
spectra, a suspiciousness metric is used to identify the statements that 
are more likely to be faulty.

By borrowing the same concept of SBFL, Eniser et al. (2019) pro-
posed DeepFault that tries to identify faulty neurons in a DNN classifier. 
To do this, it identifies when a neuron is ‘‘relevant’’ in a DNN inference 
(the counterpart of statement execution in SBFL for classical code): if 
the neuron activation (Pei et al., 2019), measured in terms of neuron 
outputs, surpasses a given threshold, the neuron is deemed to be 
activated and, therefore, relevant. DeepFault then builds spectra for the 
different neurons considering activation and whether the DNN correctly 
classifies an input or not. Finally, it uses classical suspiciousness met-
rics to assign a suspiciousness score to each neuron and ranks them 
accordingly.
4 
3.2.2. Limitations of classic DNN fault localization
Existing fault localization approaches as DeepFault are not applica-

ble to AI-enabled CPSs for three main reasons:

• Non-modularity. The DNN controller can only be analyzed as 
component of the whole system, and not in isolation.

• Lack of ground truth. Differently from standalone DNNs (e.g., im-
age classifiers) considered by DeepFault , for a DNN controller 
 embedded in an AI-enabled CPS  , we do not have the 
ground truth. Specifically, given a sequence of control actions 
𝐜(𝑡), we do not know whether they are ‘‘correct’’. Nevertheless, 
the controller drives the evolution of system  , for which we 
have requirements specified in terms of a formal specification 𝜑. 
Our intuition is that the satisfaction/violation of 𝜑 can be used to 
‘‘indirectly’’ assess the correctness of the control actions.

• Temporal decision logic. In DeepFault , fault localization is per-
formed by considering the activation of each neuron in each 
single inference of the DNN, as the correctness of each inference 
can be assessed individually. Such type of fault localization is not 
applicable to AI-enabled CPSs  , where the plant  is con-
trolled by a sequence of control actions of , and the correctness 
of a system execution (i.e., its satisfaction to 𝜑) is jointly decided 
by all those control actions. In this case, a system failure is often 
not attributed to a specific control action at a given instant, but 
rather to a sub-sequence of control actions over a time interval. 
Thus, we need new notions of neuron activation that consider the 
consecutive inferences of the DNN.

3.2.3. Proposed fault localization framework
In this paper, we propose a fault localization approach for DNN 

controllers used in AI-enabled CPS, that tackles the issues reported in 
Section 3.2.2.

First of all, to capture the temporal decision logic, we introduce dif-
ferent temporal neuron activation criteria, inspired by temporal coverage 
criteria for DNN controllers (Zhang et al., 2023). These criteria charac-
terize the temporal behavior of DNN controller inferences in different 
ways, including time instant activation, time persistent activation, and
time differential activation. We will introduce the detailed definitions of 
these criteria in Section 4.

Based on these criteria, we propose the fault localization approach
Tactical (Temporal ACTIvation-based Ai-Cps fault Localization) shown in 
Fig.  3 and described in Section 5. Tactical takes as input a test suite 𝑇𝑆
of input signals for an AI-enabled CPS  and a system specification 𝜑.
Tactical executes the tests, and builds spectra for the different neurons 
by considering their activation using a temporal neuron activation 
criterion 𝖢𝗋 and the satisfaction/violation of 𝜑 over the tests. Neurons 
are then sorted in terms of suspiciousness of being faulty, by using classic 
SBFL suspiciousness metrics.

4. Temporal neuron activation criteria

The goal of our fault localization approach is to identify which 
neurons are responsible for behaviors of the DNN controller that lead to 
unsafe states of the AI-enabled CPS. So, the first step is to know when 
a neuron is ‘‘involved’’ in a control decision.

In classical fault localization for code (Wong et al., 2016), the 
coverage of a statement is used to identify the involvement of the 
statement in a computation. However, for DNNs, there is not such a 
crisp notion. Therefore, fault localization techniques for DNNs (Sohn 
et al., 2023; Eniser et al., 2019; Li Calsi et al., 2023b) use neuron 
activation as a heuristic measure to define involvement of a neuron 
in a DNN inference. To characterize the neuron activation in a DNN 
classifier, it suffices to measure the neuron output, that identifies the 
numerical contribution to the DNN output.

However, in an AI-enabled CPS, a control decision (that could lead 
to a wrong behavior of the system) is given by a sequence of control 
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Fig. 3. Tactical – Workflow of the approach.
actions over time. So, in order to capture when the neurons contribute 
to the control actions, we need to define neuron activation criteria that 
consider sequences of DNN controller inferences.

To this end, we present a set of temporal neuron activation criteria, 
adapted from Zhang et al. (2023); in the following, for brevity, by 
‘‘criterion’’ we mean ‘‘temporal neuron activation criterion’’. In contrast 
to the simple definition of neuron activation in DNN classifiers (Eniser 
et al., 2019), these criteria integrate temporal aspects of neuron behav-
iors into the neuron activation definition from different perspectives:
time instant activation, time interval activation, and time differential
activation, to enable an effective discovery of hidden temporal patterns 
in neuron outputs.

In the work by Zhang et al. (2023), these activation criteria are used 
to measure the coverage of the neurons that contribute considerably 
to control action sequences; these criteria identify different control 
patterns, and covering them allows to guarantee a good exploration of 
the behavior of the whole AI-enabled CPSs. In this paper, we adopt a 
similar conceptual usage of these criteria: we use them to characterize 
different control patterns, and link specific neuron activations to the 
system failures.

In the following, we give the formal definitions of the three classes 
of criteria. Let 𝐧 be a neuron at the 𝑖th layer of a DNN controller , and 
𝐱 = ⟨𝐱(0), … 𝐱(𝜏)⟩ be a sequence of DNN inputs over a time interval 
[0, 𝜏]. Given an activation criterion 𝖢𝗋, we define a predicate 𝛩𝖢𝗋 that 
returns a Boolean verdict in {⊤,⊥} (i.e., true or false) telling whether 
𝐧 is activated under 𝐱 over [0, 𝜏], by the criterion 𝖢𝗋. In the following, 
predicates 𝛩𝖢𝗋 are implicitly parameterized with 𝐧 and 𝐱.
Time instant activation. For the criteria of this class, a neuron 𝐧 is 
deemed as activated if, at a particular time instant, its output meets a 
specified condition that identifies a substantial relevance of the neuron 
output to the overall DNN output.

Instant Neuron Activation (𝖨𝖭𝖠): In this criterion, the condition (in-
spired by neuron coverage (Pei et al., 2019)) assesses whether the 
neuron output is greater than a given threshold ℎ. 𝛩𝖨𝖭𝖠 is defined 
as:

𝛩(ℎ)
𝖨𝖭𝖠

∶=
(

∃𝑡 ∈ [0, 𝜏], 𝜙𝐧(𝐱(𝑡)) > ℎ
)

The neuron 𝐧 is deemed as activated if its output surpasses ℎ at 
some instant 𝑡 during [0, 𝜏].

Instant Top-𝑘 Neuron Activation (𝖨𝖳𝖪): In this criterion, the condition 
assesses whether the neuron output is greater than the outputs of 
most of the other neurons at the same layer. 𝛩𝖨𝖳𝖪 is defined as:
𝛩(𝑘)
𝖨𝖳𝖪 ∶=

(

∃𝑡 ∈ [0, 𝜏],𝐧 ∈ 𝗍𝗈𝗉𝑘(𝐱(𝑡), 𝑖)
)

where 𝗍𝗈𝗉𝑘(𝐱(𝑡), 𝑖) denotes the set of neurons 𝐧′ such that their 
neuron outputs 𝜙𝐧′ (𝐱(𝑡)) rank in the 𝗍𝗈𝗉𝑘 greatest outputs among 
all the neurons at the 𝑖th layer.
5 
Time persistent activation. Similarly to time instant activation crite-
ria, also the criteria in this class rely on a condition that identifies a 
substantial relevance of the neuron output to the overall DNN output. 
However, unlike time instant activation criteria, in this class, a neuron 
𝐧 is deemed as activated if not only its output can satisfy the condition, 
but also the condition satisfaction persists for a time interval.

Persistent Neuron Activation (𝖯𝖭𝖠): We first define a predicate 𝖯𝖯𝖭𝖠
parameterized by three parameters (a time instant 𝑡, a threshold 
ℎ, and a time interval 𝛥) as follows:
𝖯𝖯𝖭𝖠(𝑡, ℎ, 𝛥) ∶=

(

∀𝑡′ ∈ [𝑡, 𝑡 + 𝛥], 𝜙𝐧(𝐱(𝑡′)) > ℎ
)

𝖯𝖯𝖭𝖠 holds if, during the time interval [𝑡, 𝑡 + 𝛥], the neuron output 
𝜙𝐧(𝐱(𝑡′)) is persistently greater than ℎ. Subsequently, we define 
𝛩𝖯𝖭𝖠 as follows:
𝛩(ℎ,𝛥)
𝖯𝖭𝖠

∶=
(

∃𝑡 ∈ [0, 𝜏 − 𝛥], 𝖯𝖯𝖭𝖠(𝑡, ℎ, 𝛥)
)

The neuron 𝐧 is activated if there exists a time instant 𝑡 that ensures 
the satisfaction of 𝖯𝖯𝖭𝖠.

Persistent Top-𝑘 Neuron Activation (𝖯𝖳𝖪): We first define predicate 𝖯𝖯𝖳𝖪
parameterized by three parameters (a time instant 𝑡, an integer 𝑘, 
and a time interval 𝛥) as follows:
𝖯𝖯𝖳𝖪(𝑡, 𝑘, 𝛥) ∶=

(

∀𝑡′ ∈ [𝑡, 𝑡 + 𝛥],𝐧 ∈ 𝗍𝗈𝗉𝑘(𝐱(𝑡′), 𝑖)
)

𝖯𝖯𝖳𝖪 holds if, during the time interval [𝑡, 𝑡 + 𝛥], the neuron output 
persistently ranks in the top 𝑘 greatest outputs among all the 
neurons at the 𝑖th layer. Subsequently, we define 𝛩𝖯𝖳𝖪 as follows:
𝛩(𝑘,𝛥)
𝖯𝖳𝖪 ∶=

(

∃𝑡 ∈ [0, 𝜏 − 𝛥], 𝖯𝖯𝖳𝖪(𝑡, 𝑘, 𝛥)
)

The neuron 𝐧 is activated if there exists a time instant 𝑡 that ensures 
the satisfaction of 𝖯𝖯𝖳𝖪.

Time differential activation. For the criteria of this class, a neuron 𝐧
is deemed as activated if the change of the neuron output over a time 
interval follows a specified pattern. The pattern identifies a specific way 
in which the neuron contributes to the overall DNN output. We consider 
two types of patterns, described below. For convenience, we introduce 
the following notion to measure the differential behavior between two 
time instants: 𝜙𝐧

⟨𝑡1 ,𝑡2⟩
(𝐱) = 𝜙𝐧(𝐱(𝑡2)) − 𝜙𝐧(𝐱(𝑡1)).

Positive/Negative Differential Neuron Activation (𝖯𝖣/𝖭𝖣): These criteria 
require that the neuron output increases or decreases more than a 
threshold over a time interval. We first define predicates 𝖯𝖯𝖣 and 
𝖯𝖭𝖣:

𝖯𝖯𝖣(𝑡, ℎ, 𝛥) ∶=
(

∃𝑡1, 𝑡2 ∈ [𝑡, 𝑡 + 𝛥], 𝑡1 < 𝑡2 ∧ 𝜙𝐧
⟨𝑡1 ,𝑡2⟩

(𝐱) > ℎ
)

𝖯 (𝑡, ℎ, 𝛥) ∶=
(

∃𝑡 , 𝑡 ∈ [𝑡, 𝑡 + 𝛥], 𝑡 < 𝑡 ∧ 𝜙𝐧 (𝐱) > ℎ
)

𝖭𝖣 1 2 1 2
⟨𝑡2 ,𝑡1⟩
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𝖯𝖯𝖣 (or 𝖯𝖭𝖣) holds if, during the time interval [𝑡, 𝑡 + 𝛥], there exist 
two instants 𝑡1 and 𝑡2 such that the increase (or decrease) of neuron 
output between 𝑡1 and 𝑡2 is greater than ℎ. Subsequently, we define 
𝛩𝖯𝖣 and 𝛩𝖭𝖣 as follows:

𝛩(ℎ,𝛥)
𝖯𝖣 ∶=

(

∃𝑡 ∈ [0, 𝜏 − 𝛥], 𝖯𝖯𝖣(𝑡, 𝛥, ℎ)
)

𝛩(ℎ,𝛥)
𝖭𝖣 ∶=

(

∃𝑡 ∈ [0, 𝜏 − 𝛥], 𝖯𝖭𝖣(𝑡, 𝛥, ℎ)
)

The neuron 𝐧 is activated in terms of 𝖯𝖣 (or 𝖭𝖣), if there exists a 
time instant 𝑡 that ensures the satisfaction of 𝖯𝖯𝖣 (or 𝖯𝖭𝖣).

Monotonic Increase/Decrease Neuron Activation (𝖬𝖨/𝖬𝖣): These criteria 
require that, during a time interval, the neuron output should 
monotonically increase or decrease. We first define predicates 𝖯𝖬𝖨

and 𝖯𝖬𝖣 as:

𝖯𝖬𝖨(𝑡, 𝛥) ∶=
(

∀𝑡1, 𝑡2 ∈ [𝑡, 𝑡 + 𝛥], (𝑡2 − 𝑡1) ⋅ 𝜙𝐧
⟨𝑡1 ,𝑡2⟩

(𝐱) > 0
)

𝖯𝖬𝖣(𝑡, 𝛥) ∶=
(

∀𝑡1, 𝑡2 ∈ [𝑡, 𝑡 + 𝛥], (𝑡2 − 𝑡1) ⋅ 𝜙𝐧
⟨𝑡1 ,𝑡2⟩

(𝐱) < 0
)

𝖯𝖬𝖨 (or 𝖯𝖬𝖣) holds if, during the time interval [𝑡, 𝑡+ 𝛥], the neuron 
output keeps increasing (decreasing) monotonically. Subsequently, 
we define 𝛩𝖬𝖨 and 𝛩𝖬𝖣 as follows:

𝛩(𝛥)
𝖬𝖨 ∶=

(

∃𝑡 ∈ [0, 𝜏 − 𝛥], 𝖯𝖬𝖨(𝑡, 𝛥)
)

𝛩(𝛥)
𝖬𝖣 ∶=

(

∃𝑡 ∈ [0, 𝜏 − 𝛥], 𝖯𝖬𝖣(𝑡, 𝛥)
)

The neuron 𝐧 is activated in terms of 𝖬𝖨 (or 𝖬𝖣), if there exists a 
time instant 𝑡 that ensures the satisfaction of 𝖯𝖬𝖨 (or 𝖯𝖬𝖣).

All the criteria presented above are proxy measures to assess the 
involvement of a neuron in the DNN temporal behavior. Some of them 
will be more or less effective in doing so. Since we will use them in our 
proposed fault localization approach (see Section 5), they will affect its 
effectiveness. Therefore, in the experiments (see Sections 6 and 7), we 
will assess which criterion is more effective.

5. Tactical – Proposed approach

We assume to have an AI-enabled CPS  embedded with a DNN 
controller , and a system specification 𝜑 that could be violated by  . 
We also assume to have a test suite 𝑇𝑆 that consists of 𝑀 test cases 
(i.e., external input signals for ), each of which can be executed by 
the system for a simulation time 𝑇  (𝑇  guarantees that 𝜑’s satisfaction 
can be assessed).

The proposed approach Tactical is shown in Alg. 1. It takes as 
input the system  , the specification 𝜑, the test suite 𝑇𝑆, a temporal 
neuron activation criterion 𝖢𝗋 (see Section 4), and the number 𝑠 of 
neurons to be returned as the suspicious ones.
Overview. Overall, Tactical assesses the ‘‘suspiciousness’’ of each neu-
ron to be the cause of the specification violation, by constructing its
execution spectrum, which records the information regarding neuron 
activation and specification satisfaction/violation, obtained by executing 
the test cases in the test suite. The execution spectrum of a neuron 𝐧𝑖
is composed of four components ⟨𝑎𝑝, 𝑎𝑓 , 𝑛𝑝, 𝑛𝑓⟩, whose meaning is:

• 𝑎𝑝: number of passing tests in which 𝐧𝑖 is activated;
• 𝑎𝑓 : number of f ailing tests in which 𝐧𝑖 is activated;
• 𝑛𝑝: number of passing tests in which 𝐧𝑖 is not activated;
• 𝑛𝑓 : number of f ailing tests in which 𝐧𝑖 is not activated.

At the beginning, the spectrum 𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖 of each neuron is initialized to 
⟨0, 0, 0, 0⟩ (Lines 2–3). The spectra are later updated after the execution 
of each test case 𝐮, considering the neuron activation and specification 
assessment for 𝐮 (Line 9).
Specification assessment. Each test 𝐮 in the test suite 𝑇𝑆 is executed, 
by feeding it to the system  , and obtaining the system output signal 
𝐰 and a matrix 𝛷, where 𝛷(𝐧𝑖, 𝑡) stores the output of neuron 𝐧𝑖 at time 
instant 𝑡 ∈ [0, 𝑇 ] (Line 5).
6 
Algorithm 1: Tactical – the proposed approach
Input: A system  with a DNN controller  consisting of 𝑁

neurons; an STL specification 𝜑; a test suite 𝑇𝑆; a neuron 
activation criterion 𝖢𝗋; a suspiciousness metric 𝚂𝙼𝚎𝚝; number 𝑠
of suspicious neurons

Output: A set 𝖲𝗎𝗌𝖭 of 𝑠 suspicious neurons
1 function FaultLocalization( , 𝜑,𝖢𝗋, 𝚂𝙼𝚎𝚝, 𝑠)
2 for 𝑖 ∈ {1,… , 𝑁} do
3 𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖 ← ⟨0,0,0,0⟩ // init. spectrum ⟨𝑎𝑝,𝑎𝑓 ,𝑛𝑝,⟩
4 for 𝐮 ∈ 𝑇𝑆 do
5 𝐰, 𝛷 ←  (𝐮) // system execution

6 identify 𝜏 as 
{

the start of violation episode, if 𝐰 ̸⊧ 𝜑
the execution time 𝑇 , otherwise

7 for 𝑖 ∈ {1,… , 𝑁} do
8 𝛩 ← 𝐀𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧(𝛷𝑖, 𝜏,𝖢𝗋)

9

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖(𝑎𝑝) ← 𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖(𝑎𝑝) + 1 𝐰 ⊧ 𝜑 ∧ 𝛩 = ⊤
𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖(𝑎𝑓 ) ← 𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖(𝑎𝑓 ) + 1 𝐰 ̸⊧ 𝜑 ∧ 𝛩 = ⊤
𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖(𝑛𝑝) ← 𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖(𝑛𝑝) + 1 𝐰 ⊧ 𝜑 ∧ 𝛩 = ⊥
𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖() ← 𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖() + 1 𝐰 ̸⊧ 𝜑 ∧ 𝛩 = ⊥

10 𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝗌 ← ∅ // init. neurons’ susp. scores
11 for 𝑖 ∈ {1,… , 𝑁} do
12 𝗇𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝑖 ← 𝐒𝐮𝐬𝐩𝐒𝐜𝐨𝐫𝐞𝐂𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧(𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖, 𝚂𝙼𝚎𝚝)
13 𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝗌 ← 𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝗌 ∪ {𝗇𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝑖}

14 𝖲𝗎𝗌𝖭 ← 𝐒𝐞𝐥𝐞𝐜𝐭𝐒𝐮𝐬𝐩𝐍𝐞𝐮𝐫𝐨𝐧𝐬(𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝗌, 𝑠)
15 return 𝖲𝗎𝗌𝖭

Given the output signal 𝐰, the approach checks whether it satisfies 
the specification 𝜑 or not. In case of violation, it analyzes the output 
signal 𝐰 and obtains the time instant 𝜏 that identifies the start of the 
specification violation (Line 6). For instance, in Example  3 (Fig.  2), the 
violation starts at 𝜏 when 𝑑𝑟𝑒𝑙 starts to be less than the safe distance 
10, so 𝜏 can be deemed as the starting instant of the specification 
violation. In general, the identification of such a 𝜏 can be achieved by
trace diagnostics as introduced in Bartocci et al. (2018). The incorrect 
control actions made by the controller  must have happened before 
𝜏 (i.e., in [0, 𝜏)); their effect propagates throughout the execution and 
results in the violation at 𝜏. If 𝐰 satisfies the specification, the approach 
sets 𝜏 as the execution time 𝑇  (Line 6).
Activation identification. For each neuron 𝐧𝑖, the approach checks 
whether 𝐧𝑖 is activated under the neuron activation criterion 𝖢𝗋 given 
as input, using function 𝐀𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧𝐂𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧 (Line 8); the function 
takes as input 𝛷𝑖, the neuron outputs of 𝐧𝑖 during the execution in 
[0, 𝑇 ], the start of specification violation 𝜏, and the criterion 𝖢𝗋. Then, 
according to the definition of the criterion in Section 4, it computes 
𝛩 ∈ {⊤,⊥} telling if 𝐧𝑖 is activated during interval [0, 𝜏].
Spectrum update. Based on the information about specification sat-
isfaction and neuron activation of 𝐧𝑖, the spectrum of 𝐧𝑖 is updated 
accordingly, i.e., one of the components ⟨𝑎𝑝, 𝑎𝑓 , 𝑛𝑝, 𝑛𝑓 ⟩ is incremented 
by 1 (Line 9).
Suspiciousness computation. Finally, using the spectra of all the 
neurons, Tactical estimates the correlation between the behaviors of 
the neurons and the specification satisfaction/violation. Specifically, 
it computes the suspiciousness score of each neuron by adopting suspi-
ciousness metrics borrowed from SBFL (Wong et al., 2016), in order to 
identify the neurons that are likely responsible for the system specifica-
tion violation. Table  1 presents six widely used suspiciousness metrics 
in SBFL; indeed, according to Pearson et al. (2017), Tarantula, Ochiai, 
D∗, and Op2 are among the most effective SBFL metrics1; we also 

1 Note that, in this paper, we only consider SBFL metrics. So, we do not 
consider mutation-based metrics such as Metallix and MUSE, or model-based 
ones such as Barinel.
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Table 1
Adopted suspiciousness metrics 𝚂𝙼𝚎𝚝.
 Tarantula
(Jones et al., 2002)

Ochiai
(Abreu et al., 2006)

D∗

(Wong et al., 2014)
Jaccard
(Abreu et al., 2009)

Kulczynski2
(Naish et al., 2011)

Op2
(Naish et al., 2011)

 

 
𝑎𝑓
𝑎𝑓+

𝑎𝑓
𝑎𝑓+

+ 𝑎𝑝
𝑎𝑝+𝑛𝑝

𝑎𝑓
√
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In D∗, we set * as 2 and 3, by following Wong et al. (2012) and Wong et al. (2014).
R

R

R

R

R

R

consider Jaccard and Kulczynski2 because they are other two widely 
used metrics in SBFL (Wong et al., 2016). The main idea underpinning 
these metrics is that, the more frequently a neuron is activated in failing 
tests, and the less frequently it is activated in passing tests, the more 
suspicious the neuron is. This process is illustrated in Lines 10–14 of 
Alg. 1. For each neuron 𝐧𝑖, Tactical calculates the suspiciousness score of 
𝐧𝑖, by applying the selected suspiciousness metric 𝚂𝙼𝚎𝚝 to the spectrum 
𝗌𝗉𝖾𝖼𝗍𝗋𝗎𝗆𝑖 of the neuron (Line 12). Then, all the scores are collected in 
the set 𝖲𝗎𝗌𝖲𝖼𝗈𝗋𝖾𝗌 (Line 13), from which the top 𝑠 greatest neurons are 
selected as the final set 𝖲𝗎𝗌𝖭 of suspicious neurons (Line 14).

In our experiments, we will experiment will all the six metrics in 
Table  1; for D∗, we will experiment with ∗ set to 2 and to 3 (i.e., D2 and 
D3). So, in total, we will experiment with seven suspiciousness metrics.

5.1. Hyperparameter selection of the criteria

Tactical relies on the use of the criteria (see Section 4) that can be 
tuned with some hyperparameters. The selection of hyperparameters is 
critical, as it may affect the performance of Tactical. In this section, 
we propose a heuristic strategy to select reasonable ranges for the 
hyperparameters.
Activation threshold ℎ. The activation threshold ℎ is used to deter-
mine whether the output of a neuron at a time instant 𝑡 exceeds a 
specific value. If it does, the neuron is considered activated; otherwise, 
it is considered not activated. Hence, to select ℎ, the first step is to 
narrow down the hyperparameter space to the range of neuron outputs. 
Specifically, given an AI-enabled CPS  , a specification 𝜑 and a test 
suite 𝑇𝑆, we execute the system and record the neuron outputs at each 
instant of each single execution. Then, we obtain the minimum neuron 
output 𝜙𝑚𝑖𝑛 and maximum neuron output 𝜙𝑚𝑎𝑥. The threshold ℎ should 
be selected in the range [𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥], by considering how strict the 
criterion should be (higher values make the criterion more strict). In the 
experiments (RQ1), we will select three representative hyperparameters 
values for each system, and conduct a study to investigate how the 
selection of hyperparameters influences the effectiveness of Tactical.
Time interval 𝛥. Hyperparameter 𝛥 indicates for how long a condition 
must hold in order for the neuron to be considered activated (e.g., in 
𝖯𝖭𝖠, the neuron output must be higher than ℎ for more than 𝛥). The 
selection of 𝛥 should consider the system dynamics and how fast the 
system changes its behavior under the DNN controller decisions. For 
example, in a system like ACC from Example  1, the system reacts and 
changes behavior in the order of few seconds. In the experiments (RQ1), 
we will set 𝛥 by applying this type of domain knowledge.
top 𝑘. In 𝖨𝖳𝖪 and 𝖯𝖳𝖪, 𝑘 determines how many of the neurons in a 
layer with the highest output should be considered activated. Setting 
𝑘 must consider that having a too high 𝑘 would lead to having too 
many neurons activated, which produces a criterion not able to discrim-
inate among neurons. In the experiments (RQ1), we will try different 
values, by considering the distribution of output values: more spread 
distributions will have higher values of 𝑘.

6. Experiment design

In the section, we report the design of the experiments we conducted 
to assess Tactical. The source code, benchmarks, and results are publicly 
available at Lyu et al. (2025).
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6.1. Research questions (RQs)

We consider the following six research questions:

Q1: How does the selection of hyperparameters of the eight temporal 
neuron activation criteria affect the effectiveness of  Tactical? This RQ 
identifies the best setting for the hyperparameters of the criteria.

Q2: Is Tactical better than a random localization approach which selects 
the neurons randomly? This RQ assesses whether Tactical provides 
any effective guidance for fault localization.

Q3: How does the used temporal neuron activation criterion 𝖢𝗋 affect 
the effectiveness of  Tactical? This RQ identifies the criterion that 
provides the best guidance in fault localization.

Q4: How does the selection of the suspiciousness metric 𝚂𝙼𝚎𝚝 affect the 
effectiveness of  Tactical? This RQ identifies the suspiciousness 
metric that provides the best guidance in fault localization.

Q5: How does the size of test suite 𝑇𝑆 affect the effectiveness of  Tactical?
This RQ aims to investigate how the fault localization change by 
changing the size of the test suite.

Q6: Are the neurons identified by Tactical useful for improving the DNN 
controller performance? This RQ investigates whether the perfor-
mance of the DNN controller can be improved by repairing the 
neurons identified by Tactical.

6.2. Benchmarks

We use four widely-recognized CPSs to be used as plant , span-
ning over different domains such as automotive and chemistry, and 
selected from existing literature. All of these CPSs are developed in 
Simulink (Mathworks, 2024), the de facto standard formalism for mod-
eling control systems in industry.

Each subject CPS can be embedded with a different DNN controller 
, so creating a different AI-enabled CPS  . For each subject CPS, we 
use an existing approach for training DNN controllers (Tran et al., 2020; 
Zhang et al., 2023) to obtain two DNN controllers  with different 
complex architectures. Thus, we have eight AI-enabled CPS  , as 
shown in Table  2. The table reports the system complexity in terms of 
number of Simulink blocks #blocks of  (a Simulink block is the most 
fundamental element that represents a specific operation, function, or 
system component in a Simulink model), and the structure (i.e., number 
of neurons in each layer) and the number of weights #weights of .

In the following, we introduce the CPSs and their respective specifi-
cations. By the term correct benchmark, we mean the combination of an 
AI-enabled CPS instance  (as shown in Table  2) and a specification 
𝜑, denoted as 

𝜑. In total, we consider 12 correct benchmarks.
Adaptive Cruise Control (ACC). ACC has been introduced in Example 
1 and used as benchmark in Manzanas Lopez et al. (2023), Tran 
et al. (2020, 2019), Zhang et al. (2023) and Song et al. (2022). Its 
specifications are:

• 𝜑1 ≡ □[0,50](𝑑𝑟𝑒𝑙 ≥ 𝑑𝑠𝑎𝑓𝑒+1.4 ⋅𝑣𝑒𝑔𝑜∧𝑣𝑒𝑔𝑜 ≤ 30): 𝜑1 requires that the 
relative distance 𝑑𝑟𝑒𝑙 between two cars should always be greater 
than the safety distance, and the speed 𝑣𝑒𝑔𝑜 of the ego car should 
be lower than 30;

• 𝜑2 ≡ □[0,45](𝑑𝑟𝑒𝑙 < 12 + 1.4 ⋅ 𝑣𝑒𝑔𝑜 → ◊[0,5](𝑑𝑟𝑒𝑙 ≥ 12 + 1.4 ⋅ 𝑣𝑒𝑔𝑜)): 
𝜑2 requires that, during [0, 45], the ego car should act within 5 s 
when the system is not in a steady state (i.e., 𝑑 < 12+1.4 ⋅𝑣 ).
𝑟𝑒𝑙 𝑒𝑔𝑜
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Table 2
AI-enabled CPSs  .
  ACC#1 ACC#2 AFC#1 AFC#2 WT#1 WT#2 SC#1 SC#2  
 #blocks of  49 49 153 153 11 11 55 55  
 Structure of  [10 10 10 10] [15 15 15] [15 15 15] [15 15 15 15] [5 5 5] [15 15 15] [10 10 10 10] [15 15 15 15] 
 Training algorithm LMBPa SCGb LMBP LMBP BFGc BFG LMBP LMBP  
 #weights of  300 450 450 675 50 450 300 675  
a LMBP: Levenberg–Marquardt Backpropagation (LMBP) Algorithm (Lv et al., 2018).
b SCG: Scaled Conjugate Gradient Backpropagation (SCG) Algorithm (Møller, 1993).
c BFG: BFGS quasi-Newton Backpropagation (BFG) Algorithm (Gill et al., 2019).
Abstract Fuel Control (AFC). AFC, developed by Toyota (Jin et al., 
2014), has been widely used as a benchmark in literature (Menghi 
et al., 2023). It is a powertrain control system that outputs 𝜇 =
|𝐴𝐹−𝐴𝐹𝑟𝑒𝑓 |

𝐴𝐹𝑟𝑒𝑓
, i.e., the deviation of air-to-fuel (𝐴𝐹 ) ratio from a reference 

value 𝐴𝐹𝑟𝑒𝑓 . Its specifications are:

• 𝜑3 ≡ □[0,30](𝜇 ≤ 𝜇𝑠𝑒𝑡): it requires that 𝜇 should always be less than 
𝜇𝑠𝑒𝑡 (set as 0.2), during [0, 30];

• 𝜑4 ≡ □[10,28.5](𝜇 > 0.1 → ◊[0,1.5](𝜇 ≤ 0.1)): it checks whether the 
system can return to a stable state within 1.5 s when receiving a 
safety warning, during [10, 28.5].

Water Tank (WT). WT (Song et al., 2022) is a water container that 
controls the water level. The system takes a reference value ℎ𝑟𝑒𝑓  as 
the input signal and outputs the actual water level ℎ𝑜𝑢𝑡 at runtime. Its 
specification is:

• 𝜑5 ≡ □[4,5]∪[9,10]∪[14,15](|𝑒𝑟𝑟𝑜𝑟| ≤ 𝑒𝑟𝑟𝑠𝑒𝑡): it requires that the 
absolute deviation between ℎ𝑟𝑒𝑓  and ℎ𝑜𝑢𝑡 should consistently re-
main below a predefined threshold 𝑒𝑟𝑟𝑠𝑒𝑡 during [4, 5], [9, 10], and 
[14, 15]. Here, 𝑒𝑟𝑟𝑠𝑒𝑡 is set to 0.86.

Steam Condenser (SC). SC (Yaghoubi and Fainekos, 2019; Menghi 
et al., 2023) is a component of an electric power system for stabilizing 
the pressure in a condenser. The system input is the steam mass flow 
rate, while the output is the internal pressure of the condenser.

• 𝜑6 ≡ □[30,35](𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∈ [87, 87.5]): it requires that the pressure 
should be maintained in [87, 87.5] during [30, 35].

6.2.1. Test suite
All the 12 correct benchmarks have been well trained and tested; 

they have shown to satisfy their specifications for large scale and 
diverse test suites. For each correct benchmark 

𝜑, we select a test 
suite 𝑇𝑆

𝜑
 comprising 100 test cases by uniformly sampling the input 

space of 𝐮; all the tests in 𝑇𝑆
𝜑
 satisfy the specification 𝜑.

6.2.2. Faulty benchmarks
To assess the ability of Tactical to detect faults, we inject artificial 

faults into the DNN controllers  of the correct benchmarks, and 
we check whether an FL approach (see Section 6.3) can successfully 
detect the faulty neurons. Namely, we alter neuron weights’ values, 
to mimic a non-suitable training of some weights; this is similar to 
what done by Sohn et al. (2023) when assessing fault localization 
for DNN classifiers. This type of modification is similar to the model-
level mutation testing operators proposed by Ma et al. (2018c) in
DeepMutation, a mutation analysis framework for DNN; as in their case, 
our modifications try to emulate real faults.

To assess the degree of faultiness of a controller, we introduce the
correctness measure that reports the percentage of tests of the test suite 
that satisfy the specification, i.e.,

𝐶𝑀( , 𝜑, 𝑇𝑆) = |{𝐮∈𝑇𝑆∣ (𝐮)⊧𝜑}|
|𝑇𝑆|

Each of the 12 correct benchmarks has a correctness measure of 
100%.
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For each correct benchmark, we first generate a set of faulty bench-
marks 𝐹𝑏𝑒𝑛𝑐ℎ𝑠1


𝜑
, each containing a single fault; namely, for each 

weight 𝐰 of :

• we randomly sample a value 𝑣′ in [𝐰𝑚𝑖𝑛,𝐰𝑚𝑎𝑥], i.e., the range of 
weights values of the original controller . We set 𝐰 to 𝑣′, so 
obtaining the modified DNN ̃ . By sampling in the weights’ 
values of the original controller, we aim at achieving a realistic 
controller that could have been obtained by a normal training;

• we execute the test suite 𝑇𝑆
𝜑
 over ̃ and assess the 𝜑’s 

satisfaction for each test; if the correctness measure 𝐶𝑀(̃ , 𝜑,
𝑇𝑆

𝜑
) is between 10% and 90%, ̃ is kept as faulty model 

(i.e., added to 𝐹𝑏𝑒𝑛𝑐ℎ𝑠1


𝜑
), otherwise it is discarded and we try 

another value. At most, we make 20 attempts per weight.

Then, we generate faulty benchmarks containing two faults (set 
𝐹𝑏𝑒𝑛𝑐ℎ𝑠2


𝜑
), by randomly merging two faulty benchmarks from

𝐹𝑏𝑒𝑛𝑐ℎ𝑠1


𝜑
. Also in this case, we keep the faulty benchmarks ̃

whose correctness measure 𝐶𝑀(̃ , 𝜑, 𝑇𝑆
𝜑
) is between 10% and 

90%; moreover, we require that the 𝐶𝑀 of the new faulty bench-
mark is lower than the 𝐶𝑀 of its constituent faulty benchmarks. At 
most, we generate 200 faulty benchmarks in 𝐹𝑏𝑒𝑛𝑐ℎ𝑠2


𝜑
. Finally, in 

a similar way, we produce faulty benchmarks containing three faults 
(set 𝐹𝑏𝑒𝑛𝑐ℎ𝑠3


𝜑
), by randomly merging one faulty benchmark from 

𝐹𝑏𝑒𝑛𝑐ℎ𝑠1


𝜑
 and one from 𝐹𝑏𝑒𝑛𝑐ℎ𝑠2


𝜑
.

We identify with 𝐹𝑏𝑒𝑛𝑐ℎ𝑠
𝜑
=

⋃3
𝑖=1 𝐹𝑏𝑒𝑛𝑐ℎ𝑠𝑖


𝜑
 the set of all the 

faulty benchmarks of 
𝜑.

From all the 12 correct benchmarks, we produce faulty benchmarks 
with one fault, with two faults, and with three faults, that are parti-
tioned in two set of benchmarks containing 20% and 80% of the total 
benchmarks:

• 𝙱𝚎𝚗𝚌𝚑𝟷: it contains 111 faulty benchmarks with one fault, 355 
with two faults, 250 with three faults, for a total set of 716 faulty 
benchmarks.

• 𝙱𝚎𝚗𝚌𝚑𝟸: it contains 421 faulty benchmarks with one fault, 1395 
with two faults, 972 with three faults, for a total set of 2788 faulty 
benchmarks.

The two benchmark sets will be used to answer different RQs. As hyper-
parameters play an important role in the proposed neuron activation 
criteria, in RQ1 we first study the influence of the hyperparameters 
using 𝙱𝚎𝚗𝚌𝚑𝟷 and find the optimal settings to fix our approach Tac-
tical; then, we study the performance of Tactical (with the optimal 
hyperparameters found in RQ1) in the remaining RQs, using 𝙱𝚎𝚗𝚌𝚑𝟸.

6.3. Compared FL approaches

We will assess Tactical embedded with each of the eight criteria; 
we identify with Tactical𝖢𝗋 the approach embedded with criterion 𝖢𝗋. 
Moreover, as explained in Section 4, the different criteria are parame-
terized with some hyperparameters. In Section 5.1, we explain how to 
guide the selection of the hyperparameters. By following that heuristic 
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approach, we select three values (small (𝚂), medium (𝙼), and large (𝙻)) 
for the three types of hyperparameters:

• Activation threshold ℎ: for each benchmark, we set 𝚂, 𝙼, and 𝙻
to the value at 0%, 5%, and 10% of the range [𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥] of 
the neuron outputs; the rationale for choosing these values is 
that higher values would make the criterion too strict (as higher 
output values are produced by few neurons, and so very few 
neurons would be selected with a too high ℎ). We identify the 
three thresholds as ℎ𝚂, ℎ𝙼, and ℎ𝙻;

• Time interval 𝛥: for all the benchmarks, we set 𝚂, 𝙼, and 𝙻 to 0.5 s, 
1 s, and 1.5 s, as all the CPSs have a behavior that changes in the 
order of a second; therefore, the wrong behavior of the controller 
that leads to an unsafe state should be in this order of time. We 
identify the three intervals as 𝛥𝚂, 𝛥𝙼, and 𝛥𝙻;

• Top 𝑘: it is set by considering the size of the network; specifically, 
networks with more neurons in a layer should use higher values 
of 𝑘, to have more guarantees to detect the real faulty neuron. 
Therefore, we set [𝚂, 𝙼, 𝙻] to [1, 2, 3] for benchmarks of WT#1 
that is a small network; to [2, 3, 4] for benchmarks of ACC#1 
and SC#1 that are networks of medium size; to [3, 4, 5] for all 
the other benchmarks of bigger networks. We identify the three
Top 𝑘 values as 𝑘𝚂, 𝑘𝙼, and 𝑘𝙻.

So, we experiment with 48 versions of Tactical: three versions of
Tactical𝖨𝖭𝖠, Tactical𝖨𝖳𝖪, Tactical𝖬𝖨, and Tactical𝖬𝖣, and nine versions 
of Tactical𝖯𝖭𝖠, Tactical𝖯𝖳𝖪, Tactical𝖯𝖣, and Tactical𝖭𝖣.

To assess the effectiveness of Tactical, we also compare it with a 
baseline approach Random based on random sampling. For a given 𝑠
(i.e., the number of selected suspicious neurons. See Line 14 in Alg. 1), 
Random randomly samples 𝑠 neurons from all the neurons (except the 
first hidden layer) in the DNN  and returns them as the suspicious 
neurons. For every faulty benchmark, we repeat Random 200 times and 
report the average values of its evaluation metrics.

6.4. Evaluation metrics

In order to assess the effectiveness of an approach, we introduce the 
following metrics. Given a faulty benchmark ̃ and an approach app, 
the recall is measured as the percentage of real faulty neurons returned 
in the final results 𝖲𝗎𝗌𝖭 (see Alg. 1):

𝑟𝑒𝑐𝑎𝑙𝑙(app,̃ ) = # of mutated neurons of ̃ returned in 𝖲𝗎𝗌𝖭 by app
# of mutated neurons of ̃

where ‘‘mutated neuron’’ identifies a neuron in which a weight has been 
mutated. Note that recall is in [0, 1].

Given a set of faulty benchmarks 𝐹𝑏𝑒𝑛𝑐ℎ𝑠
𝜑
, the detection rate of 

an approach app is defined as:

𝐷𝑅(app, 𝐹 𝑏𝑒𝑛𝑐ℎ𝑠
𝜑
) =

∑

̃∈𝐹𝑏𝑒𝑛𝑐ℎ𝑠


𝜑

𝑟𝑒𝑐𝑎𝑙𝑙(app,̃ )

|𝐹𝑏𝑒𝑛𝑐ℎ𝑠
𝜑
|

We compute the 𝐷𝑅 for increasing values of 𝑠 (i.e., number of 
returned suspicious neurons), from 1 to 20% of the total number of 
neurons of the DNN. Then, we compute the area under the curve (𝙰𝚄𝙲) 
of 𝐷𝑅. The approaches will be compared in terms of their 𝙰𝚄𝙲. As an 
example, Fig.  4 shows the plot of the 𝐷𝑅 values for Tactical (a setting 
for each criterion) and Random, for a given benchmark set; 𝙰𝚄𝙲 values 
are the areas below each of these curves.

To answer RQ1, RQ2, and RQ3, we compare the approaches by 
performing statistical analysis of their 𝙰𝚄𝙲 results. Namely, given two 
approaches app1 and app2, we collect the values of 𝙰𝚄𝙲 obtained on 
each of the faulty benchmarks using each of the seven suspiciousness 
metrics; then, we do pairwise comparison of the 𝙰𝚄𝙲 values using 
the non-parametric test Wilcoxon signed-rank test, using 𝛼 = 0.05
as significance level. If the 𝑝-value is less than 𝛼, we reject the null 
hypothesis that there is no significant difference, and we use Cohen’s 
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Fig. 4. Example of 𝙰𝚄𝙲.

𝑑 effect size (Cohen, 1969) to assess the strength of the significance. If 
𝑑 > 0, then app1 is better; otherwise app2 is better. We use the categories 
from Kitchenham et al. (2017) to interpret the effect size: small if 𝑑
∈ (0, 0.2), medium if 𝑑 ∈ [0.2, 0.8), and large if 𝑑 ≥ 0.8. Similar categories 
hold for 𝑑 < 0.

In RQ1, we compare, for each criterion 𝖢𝗋, all versions of Tactical𝖢𝗋
(i.e., using all the hyperparameters’ values reported in Section 6.3) 
among each other, using benchmark set 𝙱𝚎𝚗𝚌𝚑𝟷. In this way, we select 
the best hyperparameter setting for each criterion 𝖢𝗋.

In RQ2, we compare the eight versions of Tactical (each initialized 
with the best hyperparameter setting found in RQ1) with Random, using 
benchmark set 𝙱𝚎𝚗𝚌𝚑𝟸.

In RQ3, we compare the eight versions of Tactical among each other, 
using benchmark set 𝙱𝚎𝚗𝚌𝚑𝟸.

To answer RQ4, we perform a similar statistical analysis, but com-
paring suspiciousness metrics, still using benchmark set 𝙱𝚎𝚗𝚌𝚑𝟸.
Namely, given a suspiciousness metrics 𝚂𝙼𝚎𝚝, we collect the 𝙰𝚄𝙲 values 
of all the approaches initialized with 𝚂𝙼𝚎𝚝 and all the criteria, for all 
the faulty benchmarks. Then, given two suspiciousness metrics 𝚂𝙼𝚎𝚝1
and 𝚂𝙼𝚎𝚝2, we compare their 𝙰𝚄𝙲 values using Wilcoxon signed-rank 
test and Cohen’s 𝑑 as described above.

To answer RQ5, we execute each version of Tactical (each criterion 
𝖢𝗋 is initialized with the best hyperparameters’ settings found in RQ1) 
using test suites of different sizes (namely, 20, 40, 60, 80, and 100) 
over the benchmarks in 𝙱𝚎𝚗𝚌𝚑𝟸. Then, we compare the results of 𝙰𝚄𝙲
obtained using the different test suite sizes, using statistical tests as 
described before.

To answer RQ6, we show that the neurons identified by Tactical can 
be used to repair the DNN controller of an AI-enabled CPS using the 
search-based repair approach ContrRep (Lyu et al., 2024). We choose 
ContrRep rather than other DNN repair approaches (e.g., Sohn et al. 
(2023)), since it is the only one that can repair DNN controllers of 
AI-enabled CPSs by considering system-level specifications. ContrRep
works as follows. Given an AI-enabled CPS  , a set of suspicious 
weights 𝑆𝑊 , a system-level specification 𝜑, and a test suite 𝑇𝑆, 
ContrRep searches for alternative values of weights 𝑆𝑊  that allow to 
repair the controller , i.e., the specification is satisfied by all the tests 
in 𝑇𝑆. ContrRep adopts Differential Evolution (DE) (Storn and Price, 
1997) as the underlying search algorithm; search variables 𝑥 define 
possible alternative values for 𝑆𝑊 ; a search individual 𝑣 identifies a 
new DNN controller whose weights 𝑆𝑊  are set to the values 𝑣 and 
the other weights keep the same value as in . The fitness function, 
that needs to be maximized, checks the correctness measure 𝐶𝑀 of a 
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Table 3
AI-enabled CPSs with real faulty controllers.
  ACC𝚁𝙵−𝜑1 ACC𝚁𝙵−𝜑2 AFC𝚁𝙵−𝜑3 AFC𝚁𝙵−𝜑4 WT𝚁𝙵−𝜑5 SC𝚁𝙵−𝜑6  
 #blocks of  49 49 153 153 11 55  
 Structure of  [15 15 15] [25 25 25] [15 15 15] [30 30 30] [15 15 15] [15 15 15 15] 
 Training algorithm LMBPa SCGb LMBP LMBP LMBP CGFc  
 #weights of  450 1250 450 1800 450 675  
a LMBP: Levenberg–Marquardt Backpropagation (LMBP) Algorithm (Lv et al., 2018).
b SCG: Scaled Conjugate Gradient Backpropagation (SCG) Algorithm (Møller, 1993).
c CGF: Conjugate Gradient Backpropagation with Fletcher–Reeves Updates (CGF) Algorithm (Scales, 1985).
modified version of  (i.e., with a modified DNN controller) over the 
test suite 𝑇𝑆. ContrRep returns the individual with the maximum fitness 
value, which can be used as repaired model. In our experiments, we use 
ContrRep as follows. Given the neurons 𝖲𝗎𝗌𝖭 returned by Tactical (using 
the best criterion 𝖯𝖣 found in RQ3, and the best suspiciousness metric 
Tarantula found in RQ4) for an AI-enabled CPS  , we use all the 
weights of 𝖲𝗎𝗌𝖭 as search variables of ContrRep. We use a population 
size of 40 individuals, and run ContrRep for 50 generations. To check 
whether repair is effective, we check the correctness measure 𝐶𝑀 on 
the original AI-enabled CPS  and on the repaired one 

𝚛𝚎𝚙
. We 

perform two types of experiment in which we repair two different types 
of benchmarks.
In the first experiment, we select some faulty benchmarks from
𝙱𝚎𝚗𝚌𝚑𝟸.2 We select four correct benchmarks, namely the ones with 
the most complex DNN controller (see Table  2) using one of their 
specifications; namely, we select ACC#2−𝜑1, AFC#2−𝜑3, WT#2 −𝜑5
, and SC#2−𝜑6. For each correct benchmark 

𝜑, we select one 
faulty benchmark from the set 𝐹𝑏𝑒𝑛𝑐ℎ𝑠1


𝜑
, one from 𝐹𝑏𝑒𝑛𝑐ℎ𝑠2


𝜑
, and 

one from 𝐹𝑏𝑒𝑛𝑐ℎ𝑠3


𝜑
. So, in this experiment, we repair 12 faulty 

benchmarks from 𝙱𝚎𝚗𝚌𝚑𝟸.
In the second experiment, we select real faulty DNN controllers (i.e., not 
artificially mutated). We obtain these faulty controllers as follows. For 
each of the six STL specifications of the four CPSs (see Section 6.2), 
we train a DNN controller such that the final trained model has a 
correctness measure 𝐶𝑀 lower than 100%:

∙ we consider different DNN architectures, including the most 
complex one in Table  2;

∙ for a given architecture, we try to train it using different training 
algorithms (namely, LMBP (Lv et al., 2018), SCG (Møller, 1993) 
and CGF (Scales, 1985));

∙ if a training algorithm obtains a model having a 𝐶𝑀 value 
lower than 100%, we take the trained model as faulty con-
troller; otherwise, we try another training algorithm for the same 
architecture;

∙ if for a given architecture we cannot train a model with 𝐶𝑀 <
100% (with any training algorithm), we try another architecture.

In this way, we obtain six AI-enabled CPSs with real faults in their DNN 
controllers; we name these AI-enabled CPSs as: ACC𝚁𝙵−𝜑1, ACC𝚁𝙵−𝜑2, 
AFC𝚁𝙵−𝜑3, AFC𝚁𝙵−𝜑4, WT𝚁𝙵−𝜑5, and SC𝚁𝙵−𝜑6. The architectures and 
the training algorithms of these models are reported in Table  3. As 
before, we repair these six benchmarks.

7. Experimental results

In this section, we review the experimental results. Table  4 reports, 
for each version of Tactical𝖢𝗋 (initialized with the best hyperparame-
ters setting found in RQ1), the 𝙰𝚄𝙲 values computed over the faulty 
benchmarks 𝙱𝚎𝚗𝚌𝚑𝟸 of each of the 12 correct benchmarks. Results are 
the averages across the seven suspiciousness metrics. We observe that

2 Note that we had to select some benchmarks, as repairing all of them 
would have made the experiments too expensive.
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Tactical is always better than Random with almost all criteria. Moreover, 
we notice that there is no best criterion, and the best results are 
obtained by different criteria for different benchmarks; still, we observe 
that 𝖯𝖣, 𝖨𝖭𝖠, and 𝖬𝖨 are overall better than the other criteria.

In the following sections, we analyze the experimental results by 
answering the research questions in Section 6.1.
RQ1. In this RQ, we check how the setting of the hyperparameters of 
the criteria affects the results. Table  5 reports, for each criterion 𝖢𝗋, 
the statistical comparison among the different hyperparameters settings 
of 𝖢𝗋 (see Section 6.4). Regarding the threshold ℎ, we observe that in 
𝖨𝖭𝖠, 𝖯𝖭𝖠, 𝖯𝖣, and 𝖭𝖣, the best hyperparameters setting has always ℎ𝚂; 
this means that it is better to have a less strict criterion that considers 
neurons activated more often (as the threshold for being considered 
activated is low).

For the time interval 𝛥, for 𝖬𝖨, 𝖬𝖣, 𝖯𝖭𝖠, and 𝖭𝖣, the best value is 
𝛥𝚂, while only for 𝖯𝖳𝖪 is 𝛥𝙼 and for 𝖯𝖣 is 𝛥𝙻; still, the second best of 
𝖯𝖳𝖪 and 𝖯𝖣 is 𝛥𝚂. This could mean that, in general, large intervals lead 
to too strict criteria that are seldom satisfied, and so do not consider 
too many neurons as activated.

For 𝑘, we observe that the best in 𝖨𝖳𝖪 is 𝑘𝚂 and in 𝖯𝖳𝖪 is 𝑘𝙼.

Answer to RQ1: Regarding the threshold ℎ and the time interval 
𝛥, it is usually better to use a small value. Instead, for parameter 
𝑘, it is better to use a small or medium value.

RQ2. In this RQ, we assess whether Tactical can effectively localize 
faulty neurons. To do this, we compare the eight versions of Tactical𝖢𝗋
(using, for each criterion 𝖢𝗋, the best setting of the hyperparameters as 
found in RQ1) with Random, using the statistical tests as explained in 
Section 6.4. Results show that all the versions of Tactical are better than 
Random with large strength for the effect size. This can be also seen in 
Table  4 where Random has the lowest 𝙰𝚄𝙲 value in almost all the cases, 
except for two in which it is has the second and third lowest value. This 
shows that Tactical is indeed able to effectively localize faulty neurons.

Answer to RQ2: Any version of Tactical is significantly better, 
with large effect size, than a random approach which selects 
neurons randomly.

RQ3. Temporal neuron activation criteria are used in Tactical as proxy 
measures to estimate the involvement of a neuron in the temporal DNN 
behavior. Being heuristic measures, it is necessary to assess their effec-
tiveness. Therefore, in this RQ, we want to assess which criterion 𝖢𝗋
provides the best results. As explained in Section 6.4, for each criterion 
𝖢𝗋, we select the best setting of its hyperparameters as discovered in 
RQ1. Results are reported in Table  6. First of all, we observe that there 
are differences among the different criteria, which means that they 
are not equivalent and that they capture different behaviors of a DNN 
controller.

Then, we notice that 𝖯𝖣 is the best criterion, better than all the 
others with strength medium; this means that an increment of the 
neuron output for a given period of time is a good proxy for the 
relevance of a neuron; when this pattern occurs, it means that the 
neuron is involved in the control decision constantly for a period of 
time. 𝖨𝖭𝖠 is the second best criterion. Indeed 𝖨𝖭𝖠 is similar to 𝖯𝖣, as 
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Table 4
Comparison of different approaches with their best hyperparameters in terms of average 𝙰𝚄𝙲 with 𝑠 ≤ 20% (average 
across all suspiciousness metrics 𝚂𝙼𝚎𝚝); computed over 𝙱𝚎𝚗𝚌𝚑𝟸. The higher the value, the better (the best approach 
is highlighted in gray ; the second best approach is highlighted in light gray ).

𝖨𝖭𝖠 𝖨𝖳𝖪 𝖯𝖭𝖠 𝖯𝖳𝖪 𝖯𝖣 𝖭𝖣 𝖬𝖨 𝖬𝖣 Random

ℎ𝚂 𝑘𝚂 ⟨ℎ𝚂 , 𝛥𝚂⟩ ⟨𝛥𝙼 , 𝑘𝙼⟩ ⟨ℎ𝚂 , 𝛥𝙻⟩ ⟨ℎ𝚂 , 𝛥𝚂⟩ 𝛥𝚂 𝛥𝚂

ACC#1−𝜑1 0.1857 0.1685 0.1920 0.1672 0.1985 0.1650 0.1976 0.1664 0.1001
ACC#1−𝜑2 0.0850 0.1046 0.0842 0.1088 0.1114 0.1037 0.1113 0.0914 0.1003
ACC#2−𝜑1 0.2078 0.1818 0.1851 0.1796 0.2434 0.1864 0.2367 0.1924 0.0998
ACC#2−𝜑2 0.2570 0.1903 0.1888 0.1823 0.2140 0.2287 0.2126 0.2156 0.1002
AFC#1−𝜑3 0.2682 0.1939 0.2465 0.1464 0.2952 0.1800 0.1983 0.1786 0.0994
AFC#1−𝜑4 0.2235 0.1689 0.2314 0.1630 0.2346 0.2119 0.1807 0.1709 0.1010
AFC#2−𝜑3 0.2306 0.2350 0.2123 0.1293 0.2626 0.1185 0.2029 0.1143 0.0997
AFC#2−𝜑4 0.2106 0.1836 0.2270 0.1344 0.1939 0.2053 0.1956 0.1287 0.1016
WT#1−𝜑5 0.1202 0.1169 0.1227 0.1280 0.1727 0.1179 0.1520 0.1295 0.1004
WT#2 −𝜑5 0.2320 0.1811 0.2240 0.1819 0.2309 0.2167 0.2146 0.2150 0.0999
SC#1−𝜑6 0.2787 0.2706 0.2676 0.3348 0.2800 0.2787 0.2820 0.3108 0.1013
SC#2−𝜑6 0.0997 0.1724 0.1011 0.1694 0.0997 0.0997 0.1318 0.0995 0.1009
it requires that a neuron is activated at a given timestamp; so, to some 
extent, 𝖯𝖣 subsumes 𝖨𝖭𝖠.

𝖬𝖨 is the third best criterion, only worse than 𝖨𝖭𝖠 and 𝖯𝖣. 𝖬𝖨
is similarly to 𝖯𝖣, as it requires that the neuron output increases; 
differently from 𝖯𝖣, it requires that the increment is monotonic. So, its 
good performance confirms that the increment of the neuron output is 
indeed an indication of the relevance of the neuron; however, requiring 
the increment to be monotonic could be too strict.

The good results of 𝖯𝖣, 𝖨𝖭𝖠, and 𝖬𝖨 are confirmed by the results 
in Table  4, where these three criteria are those with more benchmarks 
with the highest and second highest 𝙰𝚄𝙲 values.

𝖬𝖣 and 𝖭𝖣, instead, do not provide a good performance. This 
means that the decrease of the neuron activation is a not a good 
indicator of the periods in which a neuron is relevant; as a matter of 
fact, the timestamps in which 𝖬𝖣 and 𝖭𝖣 are covered are those in 
which the neuron becomes to be less influential.

Finally, we observe that also 𝖯𝖳𝖪 is not a good criterion. This is 
because, as it considers as activated the top 𝑘 neurons in a layer, it 
cannot properly discriminate among them.

Answer to RQ3: 𝖯𝖣 is the best criterion, followed by 𝖨𝖭𝖠, and 
𝖬𝖨. 𝖬𝖣, 𝖭𝖣, and 𝖯𝖳𝖪 are the worst criteria.

RQ4. In this RQ, we want to assess which is the best suspiciousness 
metric 𝚂𝙼𝚎𝚝. Table  7 reports the statistical comparison among all the 
seven considered suspiciousness metrics, as explained in Section 6.4. 
We observe that Tarantula is the best metric, followed by Jaccard. 
Op2, instead, is the worst metric. The definition of Op2 gives a lot of 
importance to 𝑎𝑓 , i.e., the number of failing tests in which the neuron 
is activated. Tarantula and Jaccard, instead, in addition to 𝑎𝑓 , also 
give some importance to 𝑎𝑝, i.e., the number of passing tests in which 
the neuron is activated. So, it seems that, in DNNs, it is important to 
consider the influence of a neuron on passing tests.

Answer to RQ4: Tarantula and Jaccard are the best suspicious-
ness metrics, while Op2 is the worst.

RQ5. In this RQ, we want to assess the influence of the test suite size 
on the effectiveness of Tactical. To do this, we check the effectiveness 
of Tactical using test suites containing 20, 40, 60, 80, and 100 tests. 
We initialize Tactical with the best criterion identified in RQ3 (i.e., 𝖯𝖣) 
and the best suspiciousness metric identified in RQ4 (i.e., Tarantula). 
Table  8 reports the statistical comparison between the execution with 
the different test suite sizes. We observe that larger test suites allow 
to obtain significantly better results that smaller test suites. This is 
expected, as more tests allow to have a better assessment of the 
contribution of different neurons to the failure.

Answer to RQ5: Larger test suites allow to obtain better fault 
localization results.
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RQ6. In this RQ, we investigate whether the neurons detected by
Tactical can be used to improve the AI-enabled CPS. As explained in 
Section 6.4, we use the search-based repair tool ContrRep (Lyu et al., 
2024) to repair all the weights of the suspicious neurons identified by
Tactical. We repair two sets of benchmarks: a subset of the artificial 
faulty benchmarks in 𝙱𝚎𝚗𝚌𝚑𝟸, and a set of real faulty benchmarks 
obtained by a non-optimal training. The results are reported in Table 
9. The table reports, for each model under repair, the correctness 
measure 𝐶𝑀 before and after repair. We observe that, in all cases, 
we manage to raise 𝐶𝑀 of an AI-enabled CPS with a non-optimal 
controller (𝐶𝑀 before repair ranges from 12% to 85% in Table  9a, 
and from 53% to 89% in Table  9b) to 100%. The results are consistent 
for the artificial faulty benchmarks and the real faulty benchmarks. The 
results demonstrate that the neurons identified by Tactical are indeed 
helpful to improve the performance of the AI-enabled CPSs.

Answer to RQ6: The neurons identified by Tactical can be ef-
fectively used as target of a search-based repair technique of 
AI-enabled CPSs.

8. Threats to validity

We here discuss threats that may affect the validity of the ap-
proach (Wohlin et al., 2012).
Construct validity. The metrics used in the assessment of the ap-
proach could be not suitable. Since we want to assess the effectiveness 
of Tactical, we mutate some weights of the DNN controller  and 
check whether the corresponding neurons can be localized. Moreover,
Tactical depends on parameterized criteria; different hyperparameters’ 
settings can affect the effectiveness of the approach. To mitigate this 
threat, in RQ2, we assessed the performance under different settings of 
the hyperparameters.
Conclusion validity. The random nature of Random can affect the final 
result. Following Arcuri and Briand (2011), we executed Random 200 
times for each benchmark. We have also used suitable statistical tests 
to compare the different approaches, by considering both significant 
difference and effect size.
Internal validity. The obtained results could be obtained by chance, 
due to a faulty implementation. To mitigate this threat, we have 
carefully tested the implementation of Tactical.
External validity. The generalizability of Tactical is an external valid-
ity threat. To mitigate it, we consider 12 correct benchmarks that are 
widely used in the community of AI-enabled CPSs, and we experiment
Tactical with 3504 faulty benchmarks obtained from these correct 
benchmarks.
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Table 5
RQ1 — Statistical comparison between the hyperparameters settings of the eight temporal neuron activation criteria, using benchmark set 𝙱𝚎𝚗𝚌𝚑𝟷. 

(a) 𝖨𝖭𝖠 (b) 𝖨𝖳𝖪 (c) 𝖬𝖨 (d) 𝖬𝖣

ℎ𝚂 ℎ𝙼 ℎ𝙻 𝑘𝚂 𝑘𝙼 𝑘𝙻 𝛥𝚂 𝛥𝙼 𝛥𝙻 𝛥𝚂 𝛥𝙼 𝛥𝙻

ℎ𝚂 – 33 33 𝑘𝚂 – 33 3 𝛥𝚂 – 33 33 𝛥𝚂 – 33 33

ℎ𝙼 77 – 3 𝑘𝙼 77 – 7 𝛥𝙼 77 – 3 𝛥𝙼 77 – 7

ℎ𝙻 77 7 – 𝑘𝙻 7 3 – 𝛥𝙻 77 7 – 𝛥𝙻 77 3 –

(e) 𝖯𝖭𝖠 (f) 𝖯𝖳𝖪
⟨ℎ𝚂 , 𝛥𝚂⟩ ⟨ℎ𝚂 , 𝛥𝙼⟩ ⟨ℎ𝚂 , 𝛥𝙻⟩ ⟨ℎ𝙼 , 𝛥𝚂⟩ ⟨ℎ𝙼 , 𝛥𝙼⟩ ⟨ℎ𝙼 , 𝛥𝙻⟩ ⟨ℎ𝙻 , 𝛥𝚂⟩ ⟨ℎ𝙻 , 𝛥𝙼⟩ ⟨ℎ𝙻 , 𝛥𝙻⟩ ⟨𝛥𝚂 , 𝑘𝚂⟩ ⟨𝛥𝚂 , 𝑘𝙼⟩ ⟨𝛥𝚂 , 𝑘𝙻⟩ ⟨𝛥𝙼 , 𝑘𝚂⟩ ⟨𝛥𝙼 , 𝑘𝙼⟩ ⟨𝛥𝙼 , 𝑘𝙻⟩ ⟨𝛥𝙻 , 𝑘𝚂⟩ ⟨𝛥𝙻 , 𝑘𝙼⟩ ⟨𝛥𝙻 , 𝑘𝙻⟩

⟨ℎ𝚂 , 𝛥𝚂⟩ – 33 33 33 33 33 33 33 33 ⟨𝛥𝚂 , 𝑘𝚂⟩ – 77 7 33 77 7 33 77 7

⟨ℎ𝚂 , 𝛥𝙼⟩ 77 – 33 33 33 33 33 33 33 ⟨𝛥𝚂 , 𝑘𝙼⟩ 33 – 33 33 7 33 33 3 33

⟨ℎ𝚂 , 𝛥𝙻⟩ 77 77 – 33 33 33 33 33 33 ⟨𝛥𝚂 , 𝑘𝙻⟩ 3 77 – 3 77 3 33 77 33

⟨ℎ𝙼 , 𝛥𝚂⟩ 77 77 77 – 33 33 3 3 33 ⟨𝛥𝙼 , 𝑘𝚂⟩ 77 77 7 – 77 7 33 77 7

⟨ℎ𝙼 , 𝛥𝙼⟩ 77 77 77 77 – 77 77 77 3 ⟨𝛥𝙼 , 𝑘𝙼⟩ 33 3 33 33 – 33 33 33 33

⟨ℎ𝙼 , 𝛥𝙻⟩ 77 77 77 77 33 – 7 77 3 ⟨𝛥𝙼 , 𝑘𝙻⟩ 3 77 7 3 77 – 33 77 3

⟨ℎ𝙻 , 𝛥𝚂⟩ 77 77 77 7 33 3 – 7 33 ⟨𝛥𝙻 , 𝑘𝚂⟩ 77 77 77 77 77 77 – 77 77

⟨ℎ𝙻 , 𝛥𝙼⟩ 77 77 77 7 33 33 3 – 33 ⟨𝛥𝙻 , 𝑘𝙼⟩ 33 7 33 33 77 33 33 – 33

⟨ℎ𝙻 , 𝛥𝙻⟩ 77 77 77 77 7 7 77 77 – ⟨𝛥𝙻 , 𝑘𝙻⟩ 3 77 77 3 77 7 33 77 –

(g) 𝖯𝖣 (h) 𝖭𝖣
⟨ℎ𝚂 , 𝛥𝚂⟩ ⟨ℎ𝚂 , 𝛥𝙼⟩ ⟨ℎ𝚂 , 𝛥𝙻⟩ ⟨ℎ𝙼 , 𝛥𝚂⟩ ⟨ℎ𝙼 , 𝛥𝙼⟩ ⟨ℎ𝙼 , 𝛥𝙻⟩ ⟨ℎ𝙻 , 𝛥𝚂⟩ ⟨ℎ𝙻 , 𝛥𝙼⟩ ⟨ℎ𝙻 , 𝛥𝙻⟩ ⟨ℎ𝚂 , 𝛥𝚂⟩ ⟨ℎ𝚂 , 𝛥𝙼⟩ ⟨ℎ𝚂 , 𝛥𝙻⟩ ⟨ℎ𝙼 , 𝛥𝚂⟩ ⟨ℎ𝙼 , 𝛥𝙼⟩ ⟨ℎ𝙼 , 𝛥𝙻⟩ ⟨ℎ𝙻 , 𝛥𝚂⟩ ⟨ℎ𝙻 , 𝛥𝙼⟩ ⟨ℎ𝙻 , 𝛥𝙻⟩

⟨ℎ𝚂 , 𝛥𝚂⟩ – 3 7 333 33 33 333 33 33 ⟨ℎ𝚂 , 𝛥𝚂⟩ – 33 33 333 33 33 33 33 33

⟨ℎ𝚂 , 𝛥𝙼⟩ 7 – 77 333 33 33 333 33 33 ⟨ℎ𝚂 , 𝛥𝙼⟩ 77 – 33 33 33 33 33 33 33

⟨ℎ𝚂 , 𝛥𝙻⟩ 3 33 – 333 33 33 333 33 33 ⟨ℎ𝚂 , 𝛥𝙻⟩ 77 77 – 33 33 33 33 33 33

⟨ℎ𝙼 , 𝛥𝚂⟩ 777 777 777 – 77 77 33 3 7 ⟨ℎ𝙼 , 𝛥𝚂⟩ 777 77 77 – 3 77 7 7 7

⟨ℎ𝙼 , 𝛥𝙼⟩ 77 77 77 33 – 77 33 33 33 ⟨ℎ𝙼 , 𝛥𝙼⟩ 77 77 77 7 – 77 7 7 77

⟨ℎ𝙼 , 𝛥𝙻⟩ 77 77 77 33 33 – 33 33 33 ⟨ℎ𝙼 , 𝛥𝙻⟩ 77 77 77 33 33 – 3 3 3

⟨ℎ𝙻 , 𝛥𝚂⟩ 777 777 777 77 77 77 – 77 77 ⟨ℎ𝙻 , 𝛥𝚂⟩ 77 77 77 3 3 7 – 3 7

⟨ℎ𝙻 , 𝛥𝙼⟩ 77 77 77 7 77 77 33 – 77 ⟨ℎ𝙻 , 𝛥𝙼⟩ 77 77 77 3 3 7 7 – 7

⟨ℎ𝙻 , 𝛥𝙻⟩ 77 77 77 3 77 77 33 33 – ⟨ℎ𝙻 , 𝛥𝙻⟩ 77 77 77 3 33 7 3 3 –

(Legend. ≡: no difference between the two approaches. 3, 33, 333: the approach on the row is better than the approach on the column with strength small, medium, large. 7, 77, 777: the approach on the row is worse than 
the approach on the column with strength small, medium, large. Best and second best settings are in green  and light green  resp.)
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Table 6
RQ3 — Statistical comparison between the eight temporal neuron 
activation criteria with their best hyperparameters, using benchmark 
set 𝙱𝚎𝚗𝚌𝚑𝟸.

𝖨𝖭𝖠 𝖨𝖳𝖪 𝖯𝖭𝖠 𝖯𝖳𝖪 𝖯𝖣 𝖭𝖣 𝖬𝖨 𝖬𝖣

𝖨𝖭𝖠 – 33 33 33 77 33 3 33

𝖨𝖳𝖪 77 – 77 33 77 3 77 33

𝖯𝖭𝖠 77 33 – 33 77 33 7 33

𝖯𝖳𝖪 77 77 77 – 77 7 77 3

𝖯𝖣 33 33 33 33 – 33 33 33

𝖭𝖣 77 7 77 3 77 – 77 33

𝖬𝖨 7 33 3 33 77 33 – 33

𝖬𝖣 77 77 77 7 77 77 77 –

(Legend as in Table  5).

Table 7
RQ4 — Statistical comparison between each pair of suspiciousness metrics, using 
benchmark set 𝙱𝚎𝚗𝚌𝚑𝟸. 

Tarantula Ochiai D2 D3 Jaccard Kulczynski2 Op2

Tarantula – 33 33 33 33 33 33

Ochiai 77 – 33 33 77 33 33

D2 77 77 – 33 77 33 33

D3 77 77 77 – 77 7 33

Jaccard 77 33 33 33 – 33 33

Kulczynski2 77 77 77 3 77 – 33

Op2 77 77 77 77 77 77 –

(Legend as in Table  5).

Table 8
RQ5 — Statistical comparison between different versions of Tactical (the best setting 
for each criterion) that use test suites 𝑇𝑆 of different sizes (|𝑇𝑆| ∈ {20, 40, 60, 80, 100}).
Tactical uses the best suspiciousness metric Tarantula identified in RQ4 (see Table  7). 
Experiments are conducted over 𝙱𝚎𝚗𝚌𝚑𝟸. 
 20 40 60 80 100 
 20 – 7 7 7 7  
 40 3 – 7 7 7  
 60 3 3 – 7 7  
 80 3 3 3 – 7  
 100 3 3 3 3 –  
(Legend as in Table  5).

9. Related work

DNN fault localization. Fault localization for standalone DNNs has 
been extensively investigated. Eniser et al. (2019) introduce DeepFault
that employs SBFL to identify faulty neurons based on their activa-
tion. Duran et al. (2021) illustrate that simultaneously performing 
fault localization for various misclassifications may lead to suboptimal 
results, attributed to the masking effect across different misclassifica-
tions. Ma et al. (2018b) propose MODE, which adopts state-differential 
analysis between misclassification and correct classification to identify 
faulty neurons. Sohn et al. (2023) present Arachne for DNN repair, 
where they address the issue of fault localization targeting neuron 
weights. Wardat et al. (2021) present DeepLocalize for pinpointing 
faults in DL programs, e.g., identifying issues with activation function 
configurations. Wardat et al. (2022) also propose DeepDiagnosis that 
extends DeepLocalize to detect faults during training and suggest pos-
sible repair actions. Cao et al. (2022) introduce DeepFD that leverages 
training information for fault localization. Ghanbari et al. (2023) pro-
pose deepmufl, which uses mutation-based fault localization to identify 
faults in DNN models due to wrong DL program configurations. Schoop 
et al. (2021), instead, propose UMLAUT  that aims to localize the 
problems in deep learning programs, which significantly diverges from 
our approach.

All previous approaches are not applicable to fault localization for 
AI-enabled CPSs that presents specific challenges discussed in Sec-
tions 1 and 3.1, i.e., the DNN cannot be analyzed in isolation, there is no 
ground truth for DNN controllers, and the control is due to a sequence 
of DNN controller inferences.
13 
DNN repair. Fault localization approaches as those described above 
allow to find critical components of the DNN that must be fixed. 
DNN repair is an emerging approach that can be used to fix the 
DNN. Usman et al. (2021) propose a repair technique that encodes the 
objective of keeping positive examples and fixing adversarial examples 
as logical constraints and solve them by off-the-shelf solvers. Sohn 
et al. (2023) propose Arachne that repairs DNNs by searching for 
corrections of model parameters based on fault localization. Li Calsi 
et al. (2023a) propose an adaptive repair framework that can handle 
the change of suspicious model parameters during the repair process 
of DNNs. Li Calsi et al. (2023b) target the problem in which there are 
multiple misclassifications and propose a technique that prioritizes the 
critical ones. Tokui et al. (2022) propose NeuRecover, a DNN repair 
method that leverages training history to identify the critical weights, 
as these weights play a key role in regression; then, they optimize them 
using a search-based repair approach similar to that of Arachne. Zhang 
and Chan (2019) propose Apricot, which synthesizes a new DNN model 
by retraining multiple reduced models on smaller training datasets and 
adapting their weights iteratively. Sotoudeh and Thakur (2021) aim 
at obtaining a repaired DNN that satisfies a given specification; to 
do this, they formulate the repair problem as a linear programming 
problem by the introduction of a Decoupled DNN architecture. Sun 
et al. (2022) utilize causality analysis to pinpoint neurons responsible 
for erroneous behavior and adjust their weights through optimization 
to correct the misbehavior while preserving model accuracy. Simi-
larly, Wu et al. (2021) propose GenMuNN, a mutation-based repair 
approach for DNNs that ranks weights based on their influence on the 
final prediction output and applies genetic algorithms to iteratively 
select mutants of DNN models with improved accuracy. Henriksen et al. 
(2022) modify localized weights guided by gradient analysis to repair 
NN misclassifications without access to the training dataset.

A different type of approaches aim at identifying and fixing prob-
lems in the DNN architecture and training setting. Kim et al. (2023) 
survey and evaluate existing repair techniques for DNN model archi-
tecture faults. Zhang et al. (2021) propose AutoTrainer, an automatic 
tool to identify and repair deep learning training problems; it can 
monitor the training process, identify problems from the collected 
training details, and apply the built-in state-of-the-art repair solutions 
to improve the DNN models.

The previous approaches can be used to repair DNN for which 
there is an explicit ground truth (like DNN classifiers), but cannot 
be applied to repair the DNN controllers considered in this work for 
which there is no explicit ground truth. Lyu et al. (2024) propose an 
approach that is able to repair DNN controllers relying on system level 
specifications to provide the assessment of the decisions of the DNN 
controller. We use this repair approach in our experiments to show that 
the neurons identified by Tactical can be effectively used to repair the 
DNN controller.
Fault localization of classic CPS. For classic CPS fault localization, 
multiple lines of research have been developed. First, Liu et al. (2016a) 
introduce an iterative approach to fault localization by using decision 
trees. Liu et al. (2016b) rely on statistical debugging and dynamic 
model slicing for fault localization. To further enhance accuracy, Liu 
et al. (2017) introduce a search-based approach that can generate 
compact and diverse test suites. Second, Bartocci et al. (2018) utilize 
trace diagnostics for fault localization of Simulink models. Later, they 
develop CPSDebug (Bartocci et al., 2019) that can debug Simulink 
failures. Moreover, they introduce a search-based approach (Bartocci 
et al., 2022) that can generate passing test cases closely mirroring 
failing tests, such that the precise fault location can be extracted from 
the system.

These studies target classic CPS models that involve classic CPS 
blocks only, and these approaches are not designed to handle the 
specific architectures of DNN controllers in AI-enabled CPS. In contrast, 
our approach is specifically devised for detecting faulty neurons in 
DNN controllers, considering the temporal features of DNN controller 
inferences.
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Table 9
RQ6 — Results of repair of AI-enabled CPSs using the neurons identified by Tactical.
 (a) Artificial faulty benchmarks (selected from 𝙱𝚎𝚗𝚌𝚑𝟸)
 ACC#2−𝜑1 AFC#2−𝜑3 WT#2 −𝜑5 SC#2−𝜑6

 𝐹𝑏𝑒𝑛𝑐ℎ𝑠𝑋∈{1,2,3}


𝜑
1 2 3 1 2 3 1 2 3 1 2 3  

 𝐶𝑀 before repair 85 29 82 34 83 41 79 61 30 82 12 17 
 𝐶𝑀 after repair 100 100 100 100 100 100 100 100 100 100 100 100

 (b) Real faulty benchmarks
 ACC𝚁𝙵−𝜑1 ACC𝚁𝙵−𝜑2 AFC𝚁𝙵−𝜑3 AFC𝚁𝙵−𝜑4 WT𝚁𝙵−𝜑5 SC𝚁𝙵−𝜑6 
 𝐶𝑀 before repair 89 55 60 53 66 85  
 𝐶𝑀 after repair 100 100 100 100 100 100  
10. Conclusion

We proposed Tactical that can localize faulty neurons in DNN con-
trollers of AI-enabled CPSs, by exploiting a series of neuron activation 
criteria that consider temporal aspects of DNN controller inferences. 
Based on extensive executions of test cases, we construct a spectrum 
for each neuron of a DNN controller, by which we can compute a sus-
piciousness score for each neuron and thereby select those suspicious 
neurons.
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