
2-5基本要素
UIカラーのシンボルロゴへの適用
シンボルに UI カラーを用い、ロゴタイプに黒を用いる展開が基本となります。単色の
場合には黒、UI カラー、その他の色彩を適用できます。

UI カラーと黒の 2色を用いた基本配色 単色の展開

FalsifAI: Falsification ofAI-EnabledHybridControl
SystemsGuidedbyTime-AwareCoverageCriteria

Zhenya Zhang1, Deyun Lyu1, Paolo Arcaini2, Lei Ma3, Ichiro Hasuo2, Jianjun Zhao1
1Kyushu University, Fukuoka, Japan

2National Institute of Informatics, Tokyo, Japan
3University of Alberta, Edmonton, Canada

Motivation
Cyber-Physical Systems (CPS) are combinations of
computing units and mechanical systems. Nowa-
days, Artificial Intelligent (AI) components are in-
creasingly deployed on CPS to perform complex con-
trol tasks under safety-critical conditions.

Computer
(PID/AI controller)

monitor,
control

physical
dynamics

Mechanical
System

Blackbox
input output

AI-enabled CPS

Quantitative
Robust Semantics

(STL)

Hill climbing
algorithm

⊭ 𝜑

input
signal u(t)

system
state y(t)

⊨ 𝜑

guidance

Quality
assurance
of CPS is

important!

Physical Plant
ẏ (t) = ℳ(y(t), c(t))

AI Controller C
c(t) = 𝐶(y(t),u(t))

y(t) c(t)

ℳ#
ℳ!(u)

Figure 1: The workflow of CPS

Classic falsification and its weakness
Falsification is a well-known validation method for
quality assurance in CPS domain.
(1) Aim: Find a breach of the given specification;

(2) Method: Hill climbing algorithm;

(3) Guidance: Robustness provided by quantitative ro-
bust semantics.

Physical Plant
ẏ(t) =ℳ(y(t), c(t))

AI Controller C
c(t) = 𝐶(y(t),u(t))

u(t)

y(t) c(t)

ℳ! ℳ!(u)
⊭ φ?

Physical Plant
ẏ(t) =ℳ(y(t), c(t))

AI Controller C
c(t) = 𝐶(y(t),u(t))

u(t)

y(t) c(t)

ℳ! ℳ!(u)
⊭ φ?

Figure 2: Hill climbing algorithm

Computer
(PID/AI controller)

monitor,
control

physical
dynamics

Mechanical
System

Blackbox
input output

AI-enabled CPS

Quantitative
Robust Semantics

(STL)

Hill Climbing
Algorithm

⊭ 𝜑

input
signal u(t)

system
state y(t)

⊨ 𝜑

guidance

Quality
assurance
of CPS is

important!

Physical Plant
ẏ (t) = ℳ(y(t), c(t))

AI Controller C
c(t) = 𝐶(y(t),u(t))

y(t) c(t)

ℳ#
ℳ!(u)

Figure 3: Classic falsification of AI-enabled CPS
guided by robustness

Prints (int a, int b){
int result = a + b;
If (result > 0)

Print (“Positive”, result)
else

Print (“Negative”, result)
}

(a) code coverage (b) neuron coverage

Covered
by tests

Not covered
by tests

sample

rob

behavior

violation
cases

robustness

Figure 4: Weakness of classic falsification

A Possible Solution
Coverage Criteria
Coverage criteria are measures of test adequacy
for programs and DNN models.

Prints (int a, int b){
int result = a + b;
If (result > 0)

Print (“Positive”, result)
else

Print (“Negative”, result)
}

(a) code coverage (b) neuron coverage

Covered
by tests

Not covered
by tests

Figure 5: Coverage criterion in traditional software
and deep neural network

Why using coverage criteria as guidance?

(1) Describe the test requirements;

(2) Fully explore system behaviors;

(3) Guide the generation of new test cases.

A Coverage-Guided Falsification Framework
The workflow of our proposed framework FalsifAI is shown below [1].

NCov

TKCov

TNCov

TTKCov

PDCov

NDCov

MICov

MDCov

Candidate
Generation …

AI-Enabled Systems
under Falsification

Adaptive Cruise
Control (ACC)

Abstract Fuel
Control (AFC)

DC-to-DC Power
Converter (DPC)
…

Safety
Specifications

Falsification Candidate
Signal Queue

Signal
Selected S0

Signal
Gen S1

Signal
Gen S2

…
Candidate Signal Selection & Generation

Safety Specification
Checking

Robustness Calculation
…

AI-Enabled Systems
Runtime Simulation

Continuous Candidate
Signal Generation

Coverage Criteria Evaluation For DNN Controller

Time
Instant

Time
Interval

Time
differential

… … …

Violation
Signal

…

Passed Signals

Coverage Statistics

Worst Robustness

Simulation Time

…
(a) Inputs (c) Outputs(b) Main Workflow of FalsifAI

Figure 6: The workflow of FalsifAI

Time-Aware Coverage Criteria
1. Time Instant Coverage Criteria 2. Time Interval Coverage Criteria 3. Time Differential Coverage Criteria

neuron
output

time

h

neuron
output

time

neuron
output

time

h

𝑡! 𝑡" 𝑡#

𝑡! 𝑡"

≥ 𝐿!

neuron
output

time

neuron
output

time𝑡! 𝑡" 𝑡#

≥ 𝐿! ≤ 𝐿!

ℎ
𝛿"

𝐼

neuron
output

time𝐼#$ 𝐼#%

Instant Neuron Coverage (NCov) Timed Neuron Coverage (TNCov) Positive/Negative Differential
Neuron Coverage (PDCov/NDCov)

Instant Top-k Neuron Coverage (TKCov) Timed Top-k Neuron Coverage (TTKCov) Monotonic Increase/Decrease
Neuron Coverage (MICov/MDCov)

𝛿&

𝐼

ℎ

Figure 7: Eight time-aware coverage criteria

Experiments
Our evaluation was performed on 3 subject CPS with 6 specifications and 18 well-trained DNN
controllers. Refer to our paper [1] for more details.

Inp NC TK TNC TTK PD ND MI MD

#b
en

c
hs

Inp 1

NC 3

TK 3

TNC 4

TTK 5

PD 4

ND 2

MI 2

MD 2

RQ1: Falsification success rate of
ACC with spec#1

RQ2: Effectiveness as a guidance RQ3: Overhead of FalsifAI

FalsifAI significantly outperforms
Br&St, but is not always better
that Fal_Inp.

Guidance provided by eight
coverage criteria is better than the
one provided by the coverage of
the input space.

FalsifAI performs effectively for
CPS with different sizes of DNN
controllers.

Conclusion:

0

10

20

30
ACC#1

ACC#2

ACC#3

ACC#4

ACC#5

ACC#6

Br&St

Fal_Inp

FalsifAI

Conclusion and Future Work
In this paper, we proposed a coverage-guided falsification framework FalsifAI, which exhaustively employs
eight time-aware coverage criteria as guidance to explore the temporal behaviors of AI-enabled CPS. These
coverage criteria aim to capture different time-series features of DNN controller and provide better guidance
to find violation cases to the system specification. The large-scale evaluation demonstrates the effectiveness
of FalsifAI and our proposed coverage criteria. In the future, we will extent this work to other types of neural
network controllers and design different coverage criteria for falsification.

References
[1] Z. Zhang, D. Lyu, P. Arcaini, L. Ma, I. Hasuo, and J. Zhao, “FalsifAI: Falsification of AI-Enabled Hybrid Control

Systems Guided by Time-Aware Coverage Criteria,” IEEE Transactions on Software Engineering, pp. 1–17, 2022.

