
SpectAcle: Fault Localisation of AI-Enabled CPS by
Exploiting Sequences of DNN Controller Inferences

DEYUN LYU and ZHENYA ZHANG, Kyushu University, Fukuoka, Japan
PAOLO ARCAINI, National Institute of Informatics, Tokyo, Japan
XIAO-YI ZHANG, University of Science and Technology Beijing, Beijing, China
FUYUKI ISHIKAWA, National Institute of Informatics, Tokyo, Japan
JIANJUN ZHAO, Kyushu University, Fukuoka, Japan

Cyber-physical systems (CPSs) are increasingly adopting deep neural networks (DNNs) as controllers, giving
birth to AI-enabled CPSs. Despite their advantages, many concerns arise about the safety of DNN controllers.
Numerous efforts have been made to detect system executions that violate safety specifications; however,
once a violation is detected, to fix the issue, it is necessary to localise the parameters of the DNN controller
responsible for the wrong decisions leading to the violation. This is particularly challenging, as it requires
to consider a sequence of control decisions, rather than a single one, preceding the violation. To tackle this
problem, we propose SpectAcle, that can localise the faulty parameters in DNN controllers. SpectAcle
considers the DNN inferences preceding the specification violation and uses forward impact to determine the
DNN parameters that are more relevant to the DNN outputs. Then, it identifies which of these parameters
are responsible for the specification violation, by adapting classic suspiciousness metrics. Moreover, we
propose two versions of SpectAcle, that consider differently the timestamps that precede the specification
violation. We experimentally evaluate the effectiveness of SpectAcle on 6,067 faulty benchmarks, spanning
over different application domains. The results show that SpectAcle can detect most of the faults.

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: fault localisation, neural network controllers, cyber-physical systems

ACM Reference format:
Deyun Lyu, Zhenya Zhang, Paolo Arcaini, Xiao-Yi Zhang, Fuyuki Ishikawa, and Jianjun Zhao. 2025. SpectAcle:
Fault Localisation of AI-Enabled CPS by Exploiting Sequences of DNN Controller Inferences. ACM Trans.
Softw. Eng. Methodol. 34, 4, Article 110 (April 2025), 35 pages.
https://doi.org/10.1145/3705307

P. Arcaini and F. Ishikawa are supported by Engineerable AI Techniques for Practical Applications of High-Quality Machine
Learning-based Systems Project (Grant Number JPMJMI20B8), JST-Mirai.
Authors’ Contact Information: Deyun Lyu (corresponding author), Kyushu University, Fukuoka, Japan; e-mail:
lyu.deyun.107@s.kyushu-u.ac.jp; Zhenya Zhang, Kyushu University, Fukuoka, Japan; e-mail: zhang@ait.kyushu-u.ac.jp;
Paolo Arcaini, National Institute of Informatics, Tokyo, Japan; e-mail: arcaini@nii.ac.jp; Xiao-Yi Zhang, University of Science
and Technology Beijing, Beijing, China; e-mail: xiaoyi@ustb.edu.cn; Fuyuki Ishikawa, National Institute of Informatics,
Tokyo, Japan; e-mail: f-ishikawa@nii.ac.jp; Jianjun Zhao, Kyushu University, Fukuoka, Japan; e-mail: zhao@ait.kyushu-
u.ac.jp.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2025/4-ART110
https://doi.org/10.1145/3705307

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

https://orcid.org/0000-0003-3017-7977
https://orcid.org/0000-0002-3854-9846
https://orcid.org/0000-0002-6253-4062
https://orcid.org/0000-0001-7414-8057
https://orcid.org/0000-0001-7725-2618
https://orcid.org/0000-0001-8083-4352
https://doi.org/10.1145/3705307
mailto:permissions@acm.org
https://doi.org/10.1145/3705307
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3705307&domain=pdf&date_stamp=2025-04-28

110:2 D. Lyu et al.

1 Introduction
A Cyber-Physical System (CPS) is given by the combination of a physical system (plant) and
a computational component (controller), where the controller monitors and controls the plant
according to the physical states of the plant and external environments. Recently, Deep Neural
Networks (DNNs) have been increasingly used as controllers to perform complex control tasks
(e.g., self-driving [8] and robotic arms control [20]); indeed, they have shown to be able to handle
intricate environments more efficiently than classic controllers. Such CPSs driven by AI-based
controllers are called as AI-enabled CPSs [22, 24, 25, 40, 41, 50, 51, 60].

Despite the great potential in terms of control, the safety of AI-enabled CPSs becomes a major
concern. Indeed, a DNN controller may produce unforeseen and inexplicable behaviours that lead
the plant to malfunctions and catastrophic hazards, which can further bring irreversible social and
economic losses. To avoid these dangerous situations, it is necessary to detect the potential unsafe
behaviours of DNN controllers and identify the root causes that produce them.

There have been extensive studies on generating unsafe system executions for these systems, i.e.,
finding a time-variant external input signal from the environment that leads the system execution to
violating a temporal-logic specification, mainly from the testing and falsification communities [13,
16, 27, 43, 48, 58, 60]. However, these works mostly demonstrate the presence of unsafe behaviours,
without delving into a comprehensive investigation of these behaviours. To assist system engineers
in enhancing system safety, it is necessary to identify the root cause of the violation: since the
decision logic of the AI-enabled system is embedded in the DNN controller, this boils down to
localising the faults in the DNN, specifically in the configuration of its parameters (e.g., weights).

However, precisely identifying the model parameters of DNN controllers that are responsible
for the violations is a challenging problem. This is due to the unexplainable programming logic of
DNNs, which makes it difficult to properly assess which parameters inside a DNN controller are
responsible for a given (wrong) decision. Some fault localisation approaches have been proposed
for DNN classifiers [10, 14, 15, 47, 53]; such approaches consider different inferences of a DNN and
compare the outcome with the ground truth (e.g., the expected label in classification). However,
such approaches are not applicable for fault localisation of DNN controllers, due to two main issues:

(1) There is no explicit ground truth for the behaviours of DNN controllers, and the correctness
of their behaviours can only be assessed by considering the system level specification.
Specifically, this requires executing the whole system controlled by the DNN controller for
a time period, and then checking whether the system outputs satisfy the temporal-logic
specification.

(2) In an AI-enabled CPS, a system violation is due to a sequence of control decisions of the DNN
controller, i.e., a sequence of inferences. Hence, fault localisation must analyse sequences
of DNN inferences, rather than single ones as done by state-of-the-art fault localisation
approaches in the context of other domains such as image classification.

Contributions. In this article, we propose SPECTrum-based fault localisation for Ai Con-
trolLErs (SpectAcle), a fault localisation approach for AI-enabled CPSs. Given a test suite (i.e., a
set of input signals) and a system specification, SpectAcle executes each test in the test suite and
obtains: (1) in case of a failing test, the sequence of DNN controller inferences preceding the start
of the violation episode (i.e., the timestamp when the specification is shown to be violated), (2) the
whole sequence of inferences for a passing test. For each inference in each test, SpectAcle assesses
the relevance of DNN weights on the control decision by calculating their forward impacts. It then
constructs the execution spectrum for each DNN weight, based on the status of test executions
(i.e., passed or failed) and relevance of the DNN weight to the control decisions. Finally, it adapts

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:3

Fig. 1. 1. The architecture of a typical AI-enabled CPS.

existing suspiciousness metrics from SBFL [57] to identify the DNN weights that are more likely
responsible for the specification violation.

We propose two versions of SpectAcle, distinguished by the significance assigned to the DNN
inferences that may account for the violation, based on their distances to the beginning of specifica-
tion violation: (1) unweighted SpectAcle (SpectAcleuw) considers equally all the DNN inferences
before the violation; (2) weighted SpectAcle (SpectAclew) considers more relevant the inferences
closer to the violation, and so weights them more in the construction of the execution spectrum.

We experimentally evaluate the effectiveness of SpectAcle on 6,067 faulty benchmarks, obtained
by injecting artificial faults into the DNN weights of 13 correct AI-enabled CPSs taken from existing
literature [43, 48, 51, 60]. The results show that SpectAcle is able to report most of the artificial
faults, which demonstrates its effectiveness.

In summary, the main contributions of this article are:

—We propose SpectAcle, a fault localisation framework for AI-enabled CPS that aims to
identify the faulty weights of DNN controllers, by exploiting the sequences of DNN inferences.
Specifically, we provide two versions of SpectAcle: SpectAcleuw gives equal importance to
the inferences of each timestamp before the violation episode, while SpectAclew weights
more the inferences that are closer to the violation episode.

—We implement both versions of SpectAcle, which are available online [37].
—We perform experimental evaluation on 6,067 faulty versions of commonly used benchmarks
of AI-enabled CPSs, controlled by DNN controllers with various structures and configurations.
The results demonstrate the effectiveness of SpectAcle in identifying the faulty weights of
the DNN controllers.

Article Structure. Section 2 introduces necessary preliminaries to understand the approach, and
Section 3 motivates the work. Then, Section 4 introduces SpectAcle. Section 5 describes the
experiment design, and Section 6 discusses experimental results. Finally, Section 7 discusses threats
that may affect the validity of the approach, Section 8 reviews some related work, and Section 9
concludes the article.

2 Preliminaries
2.1 AI-Enabled CPS
Figure 1 illustrates the architecture of a typical AI-enabled CPS. The whole systemMC is composed
of a physical plantM and a DNN controller C. At each timestamp C , the DNN controller C takes
as input the system state x(C) and the external input u(C), and produces a control decision c(C) to
trigger the system state evolution to the next timestamp C ′. In this way, the system state x and the
control decision c are both time-variant signals, mapping each timestamp to a vector. In particular,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:4 D. Lyu et al.

some of the system variables are observable from the outside, and the evolution of these variables
produces another time-variant signal v, as the system output.

In this loop, the DNN controller is the primary component that decides the evolution of the
system. In this article, we consider fully connected DNNs, defined as follows.

Definition 1 (DNN controller C). A DNN C includes an input layer, an output layer, and multiple
hidden layers. At each timestamp, C takes as input a vector (jointly constituted by system state
and external input) at the input layer, and computes an output scalar as the control decision at
the output layer. Each hidden layer consists of a number of neurons; specifically, at hidden layer
!8 (8 ∈ {1, . . . , ;}), there are B8 neurons (where B8 is a positive integer). Each neuron has a set of
parameters, including a vector of weights and a bias. We elaborate on the numerical transformations
in hidden layers. Formally, the hidden layer !8 takes an B8−1-dimensional vector ®$8−1 as the input
of the layer, and gives an B8 -dimensional vector ®$8 as the output of the layer.1 The transformation
from ®$8−1 to ®$8 is given as follows:

®$8 = f

(
, ®$8−1 + ®18

)
, (1)

where, ∈ RB8−1×B8 is a matrix of neuron weights and ®18 ∈ RB8 is a vector of neuron bias at layer
!8 , and f is an activation function that performs non-linear transformations. Common choices of
activation functions include rectified linear unit , Sigmoid, tanh, and so on.

The output layer computes the DNN output $2 , by applying a linear transformation to ®$; , the
output vector of the last hidden layer, which is then used as the control decision. Ã

In Equation (1), the computation from ®$8−1 to ®$8 consists of a linear transformation empowered
by weights and biases, and a non-linear transformation based on the activation function. In this
article, since the numerical transformation of each layer is primarily decided by the neuron weights,
we follow the existing literature [9, 30, 47, 49] in DNN fault localisation and repair, and treat these
neuron weights as the main target of our proposed fault localisation approach.

To identify a neuron weight in a DNN, we introduce the following notation. We use,(8−1, 9) (8,?)
(8 ∈ {1, . . . , ;}, 9 ∈ {1, . . . , B8−1} and ? ∈ {1, . . . , B8 }) to identify the neuron weight that has the index
(?, 9) in the weight matrix at the layer !8 (remember that B8 is the number of neurons at layer !8).
Intuitively,,(8−1, 9) (8,?) is located at the ?th neuron at layer !8 , used to multiply the output of the
9th neuron at layer !8−1, i.e., (8 − 1, 9) and (8, ?), respectively, indicate the locations of the two
neurons connected by the weight,(8−1, 9) (8,?) .

2.2 System Specifications
A system specification describes a property that the system must guarantee. In the domain of CPS,
a widely adopted formalism is Signal Temporal Logic (STL) [12], that has a formal syntax to
allow engineers to express their desired properties, and a formal semantics that allows to check
whether the system output satisfies the specification.

Definition 2 (STL Syntax). Let ®E be an # -dimensional vector. Atomic predicates are represented
as U ::≡ (5 (®E) > 0), where 5 is a function that maps ®E to a real number. The syntax of an STL
formula i is defined as follows:

i :≡ U | ⊥ | ¬i | i1 ∧ i2 | i1 ∨ i2 | ��i | ^�i | i1 U� i2 .

Here, � is a closed time interval [0,1], where 0,1 ∈ R and 0 < 1. Note that we only consider
specifications with bounded time, such that the specification satisfaction can always be assessed.

1Specifically, B0 is the dimension of the input layer, and ®$0 is the input of the DNN from the input layer.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:5

�� , ^� andU� are temporal operators always, eventually and until, which allow to express complex
temporal properties. Ã

An advantage of STL is its quantitative robust semantics [12, 17] that tells not only whether
a system output v satisfies a specification i but also how robustly it does so. Next, we give the
definition of quantitative robust semantics of STL, that maps a system output signal v and an STL
formula to a real number. Here, the signal v : [0,T] → R# is a time-variant function that represents
an execution trace of the system, where T is the time horizon, and # is the dimension of v.

Definition 3 (Quantitative Robust Semantics). Given a system output v and an STL formula i ,
the robust semantics provides a quantity [[v, i]] ∈ R ∪ {∞,−∞} that tells how robustly v satisfies
or violates i . The semantics is defined as follows:

[[v, U]] := 5
(
v(0)

)
[[v,⊥]] := −∞ [[v,¬i]] := −[[v, i]]

[[v, i1 ∧ i2]] := min
(
[[v, i1]], [[v, i2]]

)
[[v, i1 ∨ i2]] := max

(
[[v, i1]], [[v, i2]]

)
[[v,��i]] := infC ∈�

(
[[vC , i]]

)
[[v,^�i]] := supC ∈�

(
[[vC , i]]

)
[[v, i1 U� i2]] := supC ∈�

(
min

(
[[vC , i2]], infC ′∈[0,C) [[vC

′
, i1]]

)) ,

where vC denotes the C-shift of v, namely, vC maps a timestamp C ′ ∈ [0,T − C] to vC (C ′) = v(C + C ′).
By the robust semantics, we can infer the satisfaction of v to i : if [[v, i]] is positive, it means

that v satisfies i (i.e., v |= i); if [[v, i]] is negative, it means that v violates i (i.e., v 6 |= i). Ã

3 Motivation
In this work, since the DNN controller is the primary component that decides the evolution of a
system, we assume that the system executions that violate the specification should be attributed to
erroneous control decisions given by the DNN controller. Consequently, we take DNN controllers
as the target of our fault localisation.

For single-inference DNNs, fault localisation approaches have been successfully applied to
identify the causes of wrong DNN inferences. Eniser et al. [15] proposed DeepFault, which leverages
SBFL to construct execution spectra of neurons and utilises existing suspiciousness metrics to
identify the suspicious neurons responsible for the misclassification of DNN. Sohn et al. [47], in
their DNN repair tool Arachne, proposed a bidirectional localisation approach to identify the faulty
weights, which uses both gradient losses and forward impacts of each weight to characterise the
relevance of the weight to the final DNN output. However, these approaches cannot be applied in
the context of AI-enabled CPS. This is due to two main issues:

—Both DeepFault and Arachne require a notion of correctness of a DNN inference, which relies
on the ground-truth labels of DNN inputs. However, in an AI-enabled CPS, it is not possible to
determine whether a single inference of the DNN controller is correct or not, i.e., there is no
such an explicit ground truth. To assess the correctness of DNN inferences, we can only rely
on the effect they have on the satisfaction of the system specification (see Section 2.2), i.e.,
whether they provide control decisions that guarantee the specification satisfaction of system
executions. In this sense, the satisfaction of the system specification provides an indirect
ground truth regarding the correctness of the inference of the DNN controller.

—Moreover, while DeepFault and Arachne only consider individual DNN inferences, the DNN
controller of an AI-enabled CPS performs a ‘sequence of inferences’ (as shown by Figure 1)
that drive the evolution of the plant. These inferences must be considered together in fault
localisation.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:6 D. Lyu et al.

Fig. 2. Example—Adaptive cruise control system that violates the specification i ≡ �[0,T] (3rel ≥ 10).

Example 1. Consider the AI-enabled Adaptive Cruise Control (ACC) system introduced in
Section 5.2 where the DNN controller C produces the acceleration 0ego that determines the mo-
tion of the ego car and therefore affects the relative distance 3rel between the ego car and the
lead car. The system specification i requires that 3rel should always be greater than the safe dis-
tance 3safe = 10, during the time interval [0,T]; formally, i ≡ �[0,T] (3rel ≥ 10). While we cannot
tell whether a given acceleration command is correct or not, we can check how it affects the
relative distance 3rel : if this violates the system specification, the acceleration command can be
deemed not correct. Figure 2 shows examples of execution traces of 0ego and 3rel . g is the times-
tamp that identifies the beginning of the violation; therefore, the control decisions that lead to
the violation must precede g . Given the inference process of DNN (as introduced in Definition 1),
these erroneous control decisions originate from a number of sub-optimal DNN parameters, and
therefore, our primary focus in fault localisation is to identify these parameters that account
for the specification violation. While the exact timestamps at which the controller makes incor-
rect decisions are not known, it is feasible to assess the impacts of each parameter to a control
decision and thereby select the parameters that exert the greatest impact on the control deci-
sions. These parameters can be deemed to be more relevant to the erroneous control decisions,
hence they can be further considered as more responsible for the specification violation of system
executions. Ã

Problem Statement. In this article, we consider an AI-enabled CPS that violates a specification, and
the specification violation is due to erroneous control decisions made by the DNN controller. These
erroneous decisions result from sub-optimal settings of some DNN parameters that significantly
influence the DNN inferences, leading to the generation of erroneous decisions. Specifically, we
consider neuron weights (see Definition 1) as our target parameters, following existing literature
[47] on DNN classifiers, as these neuron weights can be directly modified by using DNN repair
approaches [9, 36, 47] that take as input fault localisation results for DNN repair.

4 SpectAcle
We assume to have an AI-enabled CPSMC that violates a system specification i ; the violation has
been determined by a test suite S of input signals u, each of which is executed for an execution
time T (in practice, the time horizon T of signals can be decided based on the specification i , such
that the satisfaction of i can be assessed (see Definitions 2 and 3)).

We propose that fault localisation approach SpectAcle, whose aim is to detect the cause of the
specification violation in the DNN controllers. Figure 3 provides an overview of SpectAcle. The
approach consists of four phases:

(1) Test Suite Execution: It monitors the system executions of the tests in S and obtains the
sequences of DNN controller inferences before the specification violation for the failing tests
(as test = in Figure 3), or the whole execution if no violation occurs (as test 1 in Figure 3).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:7

Fig. 3. SpectAcle—Workflow of the approach.

(2) Forward Impact Calculation: Based on the system executions for the tests, it calculates the
forward impact of each DNN weight, which indicates the relevance of a DNN weight to the
final DNN output (i.e., a control decision).

(3) Execution Spectrum Construction: By using the values of the forward impact in passing and
failing tests, it builds a spectrum for each weightF , which tells how oftenF was relevant in
passing and failing tests.

(4) Suspiciousness Score Calculation: Starting from the spectra of the different weights, it uses
suspiciousness metrics borrowed from SBFL to identify the weights that are more likely
responsible for the specification violations.

Algorithm 1 presents the four phases of SpectAcle. The algorithm takes as input an AI-enabled
CPSMC , a system specification i , an execution time T, a test suite S of input signals u forMC ,
the number of top : weights to consider in each hidden layer, the number s of suspicious weights
to return in the final results and a suspiciousness metric SusMetr.

The following sections describe in detail the four phases of SpectAcle.

4.1 Test Suite Execution
SpectAcle first initialises an empty execution spectrum ESF with four attributes 〈ep, np, ef , nf 〉
for each weightF of the DNN controller C (Lines 1–3). The meaning of these attributes and how
these attributes are updated will be described in Execution spectrum construction in Section 4.3.

Then, it takes each test case u in the test suite S (Line 4), and feeds it to the systemMC for
system execution (Line 5). The execution returns the system output v and the sequence InfSeq of
inferences of the DNN controller C. Each inferC in InfSeq contains the information regarding a
single DNN inference at time C : the DNN input, the output $8, 9 of each neuron =8, 9 and the final
output $2 of the DNN that is used as the control action c(C) for the plantM. The neuron outputs
and the final DNN output are used for the forward impact calculations (see Section 4.2).

Given the output signal v, it assesses whether the specification i is satisfied or violated (Line 6).
Moreover, in case of violation, it analyses the execution trace and obtains the timestamp g when
the system output v starts to violate the specification; the DNN controller must have done some
erroneous decisions before the timestamp g , i.e., in [0, g]. For example, in Example 1, since 3rel
starts to be below the safe distance 10 at g , g is then the first timestamp when we start to observe
the violation of the specification. If the system execution satisfies the specification, g is set as the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:8 D. Lyu et al.

Algorithm 1: SpectAcle – The proposed approach
Input : an AI-enabled CPSMC with a DNN controller C;

a setW of neuron weights (the subset of which at the hidden layers !8 denoted as,8);
a system specification i ;
maximum execution time T;
a test suite S;
number : of top weights to consider in each hidden layer;
number s of weights to return as suspicious;
a suspiciousness metric SusMetr

Output: a set of suspicious weights ΘB

1 foreach,8 ∈ {,1, . . .,; } do
2 foreach F ∈,8 do
3 ESF ← 〈0, 0, 0, 0〉 // initial spectrum of each weight

4 foreach u ∈ S do
5 〈v, InfSeq〉 ← MC (u) // system execution

6 identify g as

{
the start of violation episode, if v 6 |= i

the execution time T, otherwise
7 V ← T∫ g

0 Ω (C) 3C // compute scaling factor

8 foreach C ∈ [0, g] do
9 inferC ← InfSeq(C) // obtain the details of the inference at each timestamp

10 foreach,8 ∈ {,1, . . .,; } do
11 foreach F ∈,8 do
12 �F ← CalculateForwardImpact(F, inferC)
13 top8

:
← sort {�F | F ∈,8 } // calculate forward impacts and select the top : weights

in each hidden layer by their forward impacts

14 foreach F ∈,8 do

15


ESF (ep) ← ESF (ep) + 1 v |= i ∧ F ∈ top8

:

ESF (np) ← ESF (np) + 1 v |= i ∧ F ∉ top8
:

ESF (ef) ← ESF (ef) + V · Ω (C) v 6 |= i ∧ F ∈ top8
:

ESF (nf) ← ESF (nf) + V · Ω (C) v 6 |= i ∧ F ∉ top8
:

// construct execution spectrum

16 foreach F ∈ W do
17 scoreF ← CalculateSuspiciousnessSusMetr(ESF)

18 ΘB ← sort {scoreF | F ∈ W} // select the top s suspicious weights in a descending order

simulation time T. In order to identify g , we use the technique of trace diagnostics proposed by
Bartocci et al. [5].

4.2 Forward Impact Calculation
In the interval [0, g], the DNN controller performs a sequence of inferences to determine the
control decision at each timestamp, which leads to the satisfaction or violation of the specification.
SpectAcle, for each timestamp C ∈ [0, g] (Line 8), computes the forward impact of each DNNweight
in this interval to determine its contribution to the DNN output, namely, the control decision at C
(Lines 9–12). The calculation follows the approach proposed by Sohn et al. [47]; see an illustration
of the calculation in Figure 4. In order for a weight,(8−1, 9−1) (8, 9) to have an impact on the control
decision of a single inference inferC , the following conditions must occur: (1) the weight must affect
the linear output of its associated neuron =8, 9 ; (2) the neuron output $8, 9 of its associated neuron

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:9

Fig. 4. Forward impact of,(8−1, 9−1) (8, 9) to the final DNN output $2 .

=8, 9 should contribute to the final DNN output of the current inference. Hence, the forward impact
of a weight on an inference is given by two key components:

—weight2Neuron of a weight,(8−1, 9−1) (8, 9) is the impact on the output of its neuron=8, 9 , formally:

weight2Neuron =
,(8−1, 9−1) (8, 9) ×$8−1, 9−1∑B8−1
<=1

��,(8−1,<) (8, 9) ×$8−1,<
��

i.e., the ratio of the product of the weight and the output value of the neuron in the previous
layer it is connected to, over the sum of the absolute value of the element-wise product between
the output values of the neurons in the previous layer and the corresponding weights of the
current neuron. Intuitively, it determines the relative contribution of weight,(8−1, 9−1) (8, 9) to
the neuron output $8, 9 of neuron =8, 9 .

—neuron2Out is the impact of the output $8, 9 of neuron =8, 9 on the final DNN output $2 , i.e.,
the control decision of the DNN controller, formally:

neuron2Out =
m$2

m$8, 9

i.e., the gradient of $2 with respect to the neuron output $8, 9 .

The forward impact �,(8−1, 9−1) (8,9) of a weight,(8−1, 9−1) (8, 9) on the control decision can be repre-
sented as the absolute value of the multiplication of the two elements, namely:

�,(8−1, 9−1) (8,9) =
��weight2Neuron × neuron2Out��.

4.3 Execution Spectrum Construction
After the computation of the forward impact, SpectAcle constructs an execution spectrum ESF = 〈ep,
np, ef , nf 〉 for each weightF , that represents the contributions ofF to the satisfaction and violation
of system executions.The execution spectrum considers both the specification satisfaction/violation,
and the contributions ofF to the system execution identified by its forward impact (see Section 4.2);
these elements are reflected in the naming of the spectrum components:

—? (for pass) and 5 (for f ail) denote whether a system execution satisfies the system specification
or not;

—4 (for executed) and = (for not executed) denote whether the weight is executed or not, i.e., if
it contributes to the satisfaction/violation of the system execution. It decides this as follows:
it sorts the weights of each hidden layer !8 in a descending order according to their forward
impact (Line 13); if a weight F is ranked in the top : greatest weights (labelled as top8

:
) in

layer !8 , thenF will be deemed as executed.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:10 D. Lyu et al.

Fig. 5. Window functions.

For example, attribute ep records the number of times a weight is ranked in the top : (thus executed)
and its corresponding inference is situated in a ‘safe’ system execution (thus pass).

So, in Algorithm 1, for each weight F , the corresponding attribute in 〈ep, np, ef , nf 〉 is incre-
mented (Line 15) after one system execution:

— if v |= i ∧ F ∈ top8
:
, i.e., the specification is satisfied and F is ranked in the top : , ep is

incremented;
— if v |= i ∧F ∉ top8

:
, i.e., the specification is satisfied andF is not ranked in the top : , np is

incremented;
— if v 6 |= i ∧ F ∈ top8

:
, i.e., the specification is violated and F is ranked in the top : , ef is

incremented;
— if v 6 |= i ∧F ∉ top8

:
, i.e., the specification is violated andF is not ranked in the top : , nf is

incremented.

In the update of the spectrum components (Line 15), a spectrum component is incremented by a
quantity Ω(C) called window, that depends on the time when the inference occurs, and it is scaled
by a factor V that depends on the length of the test (namely, the time horizon T of the signal). In
the following, Section 4.3.1 provides two versions of Ω, and Section 4.3.2 explains the scaling factor
computation.

4.3.1 Two Approaches for Spectrum Construction. Recall from Section 4.1 that the timestamps
when the DNN controller makes erroneous decisions are before the timestamp g that identifies
the beginning of the specification violation, and, therefore, fault localisation should focus on the
weights that are relevant in the time interval [0, g]. However, it is difficult to exactly determine
when the wrong decisions are made, and so decide which timestamps should be considered in fault
localisation. To this end, we propose two versions of SpectAcle (SpectAcleuw and SpectAclew)
that make different assumptions on which timestamps should be considered. This is reflected in the
definition of a window function Ω used in spectrum construction (see Line 15), that increments the
spectrum depending on the specific timestamp:

Ω(C) =
{1 in SpectAcleuw
Ωham (C) in SpectAclew

SpectAcleuw considers in the same way all the relevant weights of all the timestamps (it uses a
constant window), while SpectAclew weights more the neuron weights that were relevant closer
to the system violation (it uses a Hamming window), as explained in the following. These two types
of windows are visualised in Figure 5.

SpectAcleuw (Unweighted SpectAcle). SpectAcleuw considers every inferC in the DNN inference
sequence InfSeq as having equal relevance to the violation or satisfaction. So, the value added to a
spectrum component is always 1, regardless of the distance of the timestamp C of the inference to
the beginning of specification violation g . In this sense, SpectAcle is unweighted.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:11

Table 1. Suspiciousness Metrics SusMetr Used in This Article

Tarantula [26] Ochiai [2] D* [55] Jaccard [1] Kulczynski2 [45]
ef

ef +nf
ef

ef +nf +
ep

ep+np

ef√
(ef +nf) (ef +ep)

ef ∗

ep+nf
ef

ef +nf +ep
1
2

(
ef

ef +nf +
ef

ef +ep

)
∗ > 0. Here we set ∗ as 3, according to previous practices [55, 56].

SpectAclew (Weighted SpectAcle). Differently from the unweighted SpectAcle, SpectAclew
emphasises the weights that are relevant at the timestamps that are closer to the beginning of
the specification violation g . In this sense, SpectAcle is weighted. Hence, SpectAclew requires a
time-related window function; to that end, we select the Hamming window, which is widely applied
in signal processing and spectral analysis to smooth data and reduce noise [3]. The Hamming
window Ωham is defined as

Ωham (C) = 0.54 − 0.46 · cos
(c · C

g

)
with C ∈ [0, g] .

When C = g , the Hamming window has the maximum value 1; instead, when C = 0, it has the
minimum value 0.08.

4.3.2 Scaling Factor. Note that different tests u contribute with different numbers of inferences
to the construction of the spectrum. For passing tests, all the inferences till T are considered, while
for failing tests, all the inferences till g (g ≤ T) are considered. To ensure that each test contributes
equally to the construction of the spectrum, the window value in failing tests is scaled depending
on the length of the test. Specifically, when increasing the spectrum of ef and nf at Line 15 of
Algorithm 1, this is scaled by the scaling factor V computed at Line 7. Intuitively, the spectrum
additions for inferences of the shorter tests (i.e., the failing ones) are weighted more than those of
longer tests (i.e., the passing ones).

The computation of the scaling factor depends on the window function used. Let us consider the
constant window used in SpectAcleuw. In this case, the scaling factor becomes T∫ g

0 13C
= T

g
. For

example, the scale factor of a test failing at g = T/2 is V = T/(T/2) = 2; in this way, a failing test with
half of the length of a passing test provides the same contribution to the spectrum. In the case of
the Hamming window, the scaling factor can be generalised to T∫ g

0 Ωham (C) 3C
.

4.4 Suspiciousness Score Calculation
Based on the execution spectra of all weights, SpectAcle uses suspiciousness metrics to calculate
the suspiciousness score of each weight, to identify the weights that are highly relevant to the
violations. Table 1 reports five suspiciousness metrics that have been widely used in software fault
localisation [57].2 The basic premise behind these metrics is that the more frequently a weight is
ranked in top : when the violation occurs, and the less frequently it is ranked in top : when the
satisfaction happens, the more suspicious the weight is. A higher suspiciousness score means that
the weight is more likely to be a faulty one. Lines 16–18 describe the process of suspiciousness score
calculation. Based on the execution spectrum ESF obtained by Algorithm 1, SpectAcle calculates
the suspiciousness score for each F based on a given suspiciousness metric SusMetr (Lines 16
and 17) and selects the top s weights that have the highest suspiciousness scores as the output of

2Note that we did not use the metric Kulczynski1 [45], as it has been shown that it is equivalent to Jaccard (see Proposition
7.2 in [45]).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:12 D. Lyu et al.

Table 2. An Illustrative Example of SpectAcleuw (Grey Cells Indicate Top-k)

Forward Impact Exec. Spectrum
from an Exec.

Exec. Spectrum
〈ep, np, ef , nf 〉

Suspiciousness
Score

C0 C1 C2 C3

F1
u1 0.7 0.9 0.6 1.1 〈3, 1, 0, 0〉 〈3, 1, 0, 4〉 0
u2 0 0.1 0.3 × 4

3 · 〈0, 0, 0, 3〉

F2
u1 0.3 0.5 0.8 0.2 〈1, 3, 0, 0〉 〈1, 3, 4, 0〉 0.8
u2 0.4 0.9 2.3 × 4

3 · 〈0, 0, 3, 0〉

fault localisation (Line 18), because these are the weights that are more likely responsible for the
violations.

Example 2. For explanation purposes, we show how SpectAcleuw (that uses the constant
window) works on a toy example; the application of SpectAclew would be similar. We consider a
DNN controller having only one hidden layer that includes two neurons, each having only one
weight. Table 2 shows the computation of fault localisation for it. The system executes in time
interval [C0, C3]. The test suite S consists of two input signals u1 and u2. u1 triggers the inference
sequence InfSeq1 and gives the system output v1 that satisfies specification i ; u2 triggers the
inference sequence InfSeq2 and gives the system output v2 that violates i at C2. As shown in Line 6
of Algorithm 1, we need to identify the timestamp g that is either when the system output starts to
violate the specification, or the simulation time) ; as a result, we identify g1 and g2, respectively, for
u1 and u2, namely, they are g1 = C3 and g2 = C2. Table 2 also reports the forward impact of weights
F1 andF2 for each DNN inference at each timestamp.

We set the hyper-parameter : in Line 13 as 1, i.e., the weight whose forward impact is ranked
in top-1 at the hidden layer will be regarded as executed (in grey in the table). For instance, for
InfSeq1, since the forward impact of F1 at C1 is 0.9, higher than 0.5 of F2, F1 is in the top-1 at C1;
hence, ep ofF1 and np ofF2 are incremented in the spectrum. Considering all the four timestamps,
the execution spectra ofF1 andF2 for InfSeq1 are 〈3, 1, 0, 0〉 and 〈1, 3, 0, 0〉.

In this example, SpectAcleuw uses a constant window (see Section 4.3.1) to assign equivalent
significance to DNN inferences at different timestamps. For the sequence InfSeq2 (that leads to the
violation of i at g2 = C2), the constant window gives the same contribution of 1 at C0, C1, and C2.
Since the forward impact ofF2 is consistently greater than that ofF1, we considerF2 as always
executed; so, the execution spectrum ofF2 for InfSeq2 is 〈0, 0, 3, 0〉. The scaling factor V is used to
keep the same contribution to the spectrum between passing and failing sequences. For InfSeq2
that leads to specification violation at g2 = C2, V is | {C0,...,C3 } || {C0,...,C2 } | =

4
3 .

In this example, we use Jaccard as suspiciousness metric and we set s = 1. The score ofF1 is 0
and the score ofF2 is 0.8, so SpectAcleuw returnsF2 as the suspicious weight. Ã

5 Experiment Setup
In this section, we elaborate on the detailed experimental setup to investigate the effectiveness
of SpectAcle. All AI-enabled CPSs used as benchmarks and the source code of SpectAcle for
reproducing our experiments are publicly available on the GitHub repository [37]. Additional plots
not reported in the article are available at [38].

5.1 ResearchQuestions (RQ)
We identified six RQs to assess the effectiveness of SpectAcle.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:13

Table 3. Benchmark AI-Enabled CPSs—CPSs and Their DNN Controllers (|W| Is the Number of Weights
of C; |M| Is the Number of Blocks ofM)

CPS Description C’s Inputs C’s Output MC C’s Structure |W| |M|

u (Range [Lower, Upper]) x

ACC Keep relative distance
and ego car speed

Lead car’s acceleration
[-1, 1]

Ego car’s speed Ego car’s
acceleration

ACC#1 [10, 10, 10] 200 49
ACC#2 [15, 15, 15] 450 49

AFC Maintain an optimal
air-to-fuel ratio

Throttle angle [8.8, 61.1];
engine speed [900, 1100]

Inlet air mass flow
rate; air-to-fuel ratio

Commanded
fuel

AFC#1 [15, 15, 15] 450 153
AFC#2 [15, 15, 15, 15] 675 153

SC Stabilize the pressure
Steam flowrate [3.99,
4.01]

Actual pressure
Cooling
water flow
rate

SC#1 [10, 10, 10, 10] 300 55
SC#2 [15, 15, 15, 15] 675 55
SC_R [3] 18 55

WT Monitor the water
level

Water level reference
[10, 20]

Actual water level Waterflow WT#1 [5, 5, 5] 50 11
WT#2 [15, 15, 15] 450 11

AFC, Abstract Fuel Control; SC, Steam Condenser; WT, Water Tank.

RQ1: Does SpectAcle effectively localise the faulty DNN weights in AI-enabled CPSs?
In this RQ, we evaluate whether SpectAcle can actually identify faulty weights that exist in
a DNN controller C. To do this, we compare it with two baseline approaches.

RQ2 : How does the selection of hyper-parameter k influence the effectiveness of SpectAcle?
In this RQ, we investigate which value of k (used to consider a weight ‘executed’ or not in
spectrum construction. See Section 4.3 and Line 13 in Algorithm 1) allows to obtain the best
fault localisation results.

RQ3: How do SpectAclew and SpectAcleuw compare with each other?
In this RQ, we investigate the influence of the window function (see Section 4.3.1) to the
effectiveness of SpectAcle. Namely, we compare the performances of SpectAclew with that
of SpectAcleuw.

RQ4: How does the selection of the suspiciousness metric SusMetr influence the effectiveness of
SpectAcle?
In this RQ, we investigate which suspiciousness metric, among the five reported in Table 1,
allows to obtain the best fault localisation results.

RQ5: Are the weights identified by SpectAcle useful for improving the DNN controller performance?
In this RQ, we investigate whether the performance of the DNN controller can be improved
by repairing the weights identified by SpectAcle.

RQ6: What is the computational cost of SpectAcle?
In this RQ, we investigate if the computational cost of executing SpectAcle is acceptable
and if it differs across different AI-enabled CPSs.

5.2 Benchmarks
To evaluate the effectiveness of SpectAcle, we selected nine AI-enabled CPSs. Table 3 reports their
functionalities, controller details, and plant details.

The AI-enabled CPSs have been built as follows. We first selected, as plantsM, four CPSs largely
used in the literature [23, 41, 43, 48, 51, 58, 60] that span over different domains, such as automotive
and chemical industry: ACC, Abstract Fuel Control (AFC), Steam Condenser (SC), and Water
Tank (WT). All the subject CPSs are implemented in Simulink [42], the de facto standard to design
and model CPSs. All these CPSs are embedded with a classic controller, that we want to replace
with a DNN controller. In the literature, for each of these CPSs, some STL specifications describing
their expected behaviour have been reported. We selected some specifications for each CPS and

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:14 D. Lyu et al.

tuned their parameters (e.g., constants used as thresholds), so that the classic controller always
behaves correctly over the input signals u that we use to train the DNN controller (as the classic
controller must act as a supervisor during training. See Section 5.2.1).

ACC. ACC [41] aims to maintain a safe distance between the ego car and the lead car by adjusting
the acceleration of the ego car. The ACC system takes the lead car’s acceleration as input and
provides outputs in terms of the velocities and distances covered by both the lead and ego cars. The
specification i1

ACC requires that the relative distance drel between two cars must always be higher
than the sum of the safe distance dsafe and the reaction distance reactDist (i.e., 1.4 × vego, where 1.4
is the time-gap [31]) of the ego car during the time interval [0, 50], and that the speed of the ego
car vego should always be lower than a given speed vset . Here, dsafe and vset are set to 10 and 30,
respectively.

i1
ACC ≡ �[0,50] ((drel ≥ dsafe + reactDist) ∧ vego ≤ vset) with reactDist = 1.4 × vego .

The second specification i2
ACC states that during the time interval [0, 45], if the relative distance

drel is lower than the sum of the reaction distance reactDist of the ego car and a distance slightly
above the safe distance dsafe (we use 12 in the specification), the system is on the edge of a hazardous
state. The system is required to recover from this state and return to a safe state within 5 seconds.

i2
ACC ≡ �[0,45] (drel < 12 + reactDist → ^[0,5] (drel ≥ 12 + reactDist)) with reactDist = 1.4 × vego .
AFC. AFC, developed by Toyota [23], aims to regulate the mixture ratio of air and fuel in the

engine intake for optimal combustion efficiency. The system takes the pedal angle and engine speed
as exogenous inputs and minimises the deviation ` = |AF − AFref |/AFref , which is expressed as
the absolute difference between the actual air fuel ratio AF and its reference value AFref divided
by AFref . With the exogenous signals, the controller dynamically adjusts intake of air and fuel,
to maintain the optimal air-fuel ratio. The specification i1

AFC requires that the deviation ` should
never exceed a predefined value `set during the time interval [0, 30]. Here, `set is set to 0.2.

i1
AFC ≡ �[0,30] (` ≤ `set).

The second specification i2
AFC requires that, during time interval [10, 28.5], when ` exceeds 0.1,

the controller should bring ` back to 0.1 within 1.5 seconds.

i2
AFC ≡ �[10,28.5] (` > 0.1→ ^[0,1.5] (` ≤ 0.1)) .

SC. SC [58] is a component of an electric power system. During the condensation process of
steam, it aims to keep the pressure in the condenser around a reference pressure. The external input
of the system is the steam mass flow rate, while the system’s output is the internal pressure of the
condenser. The specification iSC of SC requires that the pressure should be maintained between 87
and 87.5 in the time interval [30, 35].

iSC ≡ �[30,35] (pressure ≥ 87 ∧ pressure ≤ 87.5).
WT. WT [48] is used to control the inflow and outflow of water. In this system, water can enter

or flow out the tank until the water level reaches a predefined reference value. Over time, the water
level should stabilise and match the reference level. The system takes the reference water level
href as input and continuously outputs the actual water level hout . The specification iWT requires
that the absolute deviation error between hout and href remains below a predefined threshold value
errset during specific time intervals, namely [4, 5], [9, 10], and [14, 15]. In our experiments, we set
errset to 0.86.

iWT ≡ �[4,5]∪[9,10]∪[14,15] (|hout − href | ≤ errset).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:15

Table 4. Training Details of the DNN Controllers C

DNN Controller C Training Algorithm Max Epoch Min Gradient Final Training Loss (MSE)

ACC#1 LMBP* 1,000 1 × 10−10 3.18 × 10−3

ACC#2 SCG** 1,000 1 × 10−10 7.49 × 10−3

AFC#1 LMBP 1,000 1 × 10−10 1.27 × 10−5

AFC#2 LMBP 1,000 1 × 10−10 1.79 × 10−1

SC#1 LMBP 1,000 1 × 10−10 3.62 × 10−3

SC#2 LMBP 1,000 1 × 10−10 3.78 × 10−3

SC_R – – – –
WT#1 BFG*** 1,000 1 × 10−10 1.84 × 100

WT#2 BFG 1,000 1 × 10−10 1.83 × 100

*LMBP: Levenberg–Marquardt Backpropagation (LMBP) Algorithm [35]; **SCG: Scaled Conjugate Gradient backpropagation
(SCG) Algorithm [44]; ***BFG: BFGS quasi-Newton (BFG) Algorithm [19].

5.2.1 Construction of an AI-Enabled CPS. To build AI-enabled CPSs to use as a target of SpectA-
cle, we proceeded as follows. In order to obtain AI-enabled CPSsMC , for each plantM described
above, we considered two feed-forward DNNs as controller C; moreover, for SC, we also considered
an RNN as controller C.

Some of these controllers are taken from existing repositories. Specifically, for AFC, we took the
feed-forward DNNs trained in FalsifAI [60]. For SC, instead, we took the RNN controller proposed
in [58]. The other controllers, instead, have been trained for this work. Specifically, for ACC, SC
and WT, we followed the approach explained in [60] and trained two feed-forward neural networks
for each of them. The specific training steps are detailed as follows:

(1) we randomly generate a set of 10,000 input signals u; these input signals u are constrained
within specific input ranges (reported in Table 3) obtained by following official documenta-
tions and technical manuals [41, 48, 58];

(2) we execute the model embedded with the classic controller over the generated input signals
u and collect the controller output c and system state x; note that, as explained before, the
classic controllers never violate the system specification;

(3) the inputs u, and the observed outputs c and x constitute the training data for the DNN
controller C;

(4) we employ the Deep Learning Toolbox of MATLAB to train a neural network C with the aim
to minimise the prediction error of c given input 〈x, u〉 for C.3 After training and validating
the neural network, we replace the classic controller in the Simulink model with the newly
trained neural network controller C, so obtaining an AI-enabled CPSMC .

Table 4 reports details about the training of the DNN controllers (either performed by us or in
the original papers) in terms of used training algorithm, maximum number of training epochs,
the threshold of gradient descent for which the training stops and the final loss in terms of Mean
Squared Error (MSE).4 Table 3 reports the complexities of the nine AI-enabled CPSs in terms

3We decided to train the neural networks in MATLAB to ease the integration with the CPS plants that are modelled in
Simulink.
4Note that, for SC_R, we only have access to the RNN controller reported in [41, 58], but we do not have information on
how it was trained and what was the final training loss.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:16 D. Lyu et al.

of number of blocks of eachM and number of weights of the controller C. From Table 4, we
observe that, for most of the benchmarks, the final training loss is similar between the two DNN
controllers; the only difference is AFC, for which the most complex controller (i.e., AFC#2) obtains
a larger loss; this is probably due to the fact that AFC#2 is a much more complex network than
AFC#1.

In the following, a correct benchmark is given by an AI-enabled CPSMC and a specification i ,
identified asMC_i . Therefore, in total, there are 13 correct benchmarks (there are four correct
benchmarks for both ACC and AFC, three correct benchmarks for SC, and two correct benchmarks
for WT).

5.2.2 Faulty Benchmarks. To evaluate the effectiveness of SpectAcle, we introduce artificial
faults in C and we check the ability of SpectAcle and of the compared baseline approaches in
identifying them. To do this, we mutate neuron weights to produce faulty DNN controllers, similarly
to what was done by Sohn et al. [47] to mimic improper training of the weights. In order to measure
‘how much’ a faulty controller affects the correctness of the system, we define the safety rate that
counts how many tests of the test suite satisfy the specification. Formally, given a test suite S, the
safety rate SR of an AI-enabled CPSMC w.r.t. a specification i is defined as

SR(MC, i,S) = |{u ∈ S | M
C (u) |= i}|
|S| (2)

i.e., the ratio of tests satisfying the specification.
Given a correct benchmark MC_i (see Section 5.2.1), the generation of faulty benchmarks

containing different number of faults is as follows.
First, we generate a test suite S of 100 tests (i.e., input signals u) for the original AI-enabled CPS.

Since the time domain is continuous, it is not possible to synthesise an input signal by providing its
value at each moment; therefore, we adopt a commonly used parametrised representation, namely
piecewise constant, in which the time domain is split in � intervals, and a signal is given by �

constants, each identifying the value of the signal in a time interval. We generate the tests by
uniformly sampling the values for the � intervals. We set � by following related literature [48,
60]: following [60], � has been set to 10 for ACC, and to 5 for AFC; following [48], � has been set
to 7 for SC, and to 3 for WT.MC passes all the tests, i.e., the safety rate SR(MC, i,S) is 100%.

Then, we produce a set of faulty benchmarks containing single faults as follows:

—We identify the range of weights values in the original controller C, i.e., [,min,,max];
—For each weightF of C:

–we sample a value E ′ in the original range of weights enlarged of 50%, i.e., E ′ ∈ [,min −
sgn(,min)×,min

2 ,,max + sgn(,max)×,max

2], where sgn(·) ∈ {−1, 1} identifies the sign of a value.
We set F to E ′, so obtaining a mutated modelMC

5
. The intuition of sampling around the

weights values of the original controller is that we want to produce realistic DNNs that are
obtainable by a good training;

–we runMC
5

over each test in S and assess i ’s satisfaction; if the safety rate SR(MC
5
, i,S)

is between 10% and 90%, we keepMC
5
as a faulty model, otherwise we discard it and sample

another value; the intuition behind using this range of SR is to guarantee that all faulty
benchmarks have both passing and failing tests (which is required for SBFL to be effective),
and to have different types of faults. At most, we perform 20 attempts of modification of
each weightF ;

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:17

Table 5. Number of Faulty Benchmarks (for Each SetMuts8MC_i (8 ∈ {1, . . . , 5}) and for SetMutsMC_i)
Generated from the 13 Correct Benchmarks

ACC#1_i1
ACC ACC#1_i2

ACC ACC#2_i1
ACC ACC#2_i2

ACC AFC#1_i1
AFC AFC#1_i2

AFC AFC#2_i1
AFC

SetMuts1MC_i 36 39 39 59 66 49 79
SetMuts2MC_i 179 200 195 190 164 178 147
SetMuts3MC_i 122 186 143 182 110 147 99
SetMuts4MC_i 77 164 93 170 68 123 65
SetMuts5MC_i 53 123 64 151 39 87 37

SetMutsMC_i 467 712 534 752 447 584 427

AFC#2_i2
AFC SC#1_iSC SC#2_iSC SC_R_iSC WT#1_iWT WT#2_iWT Total

SetMuts1MC_i 70 12 11 20 23 71 574
SetMuts2MC_i 169 37 44 7 177 200 1,887
SetMuts3MC_i 124 10 13 0 136 199 1,471
SetMuts4MC_i 91 65 3 0 85 191 1,195
SetMuts5MC_i 61 35 57 0 56 177 940

SetMutsMC_i 515 159 128 27 477 838 6,067

—We denote by SetMuts1MC_i the set of all the faulty benchmarksMC
5

(obtained from the
correct benchmarkMC_i) containing a single fault. At most, SetMuts1MC_i contains as many
mutants as the number of weights ofMC .5

Then, we build faulty benchmarks containing higher number of faults as follows. We build
faulty benchmarks SetMuts2MC_i having two faults by combining two single-fault benchmarks
from SetMuts1MC_i . We only keep the faulty benchmarksMC

5
whose safety rate SR(MC

5
, i,S) is

between 10% and 90%; moreover, to guarantee that the two weight mutations are both contributing
to the decrease in safety (and not cancelling each other), we require that the SR of the combined
benchmark is lower than that of the constituent single-fault faulty benchmarks. Atmost, we generate
200 benchmarks in SetMuts2MC_i ; however, we usually generate less than 200 benchmarks, as we
do not find enough suitable combinations of single-fault benchmarks.

In a similar way, we generate benchmark set SetMuts3MC_i (by merging benchmarks from
SetMuts1MC_i and SetMuts2MC_i), benchmark set SetMuts4MC_i (by merging benchmarks from
SetMuts1MC_i and SetMuts3MC_i), and benchmark set SetMuts5MC_i (by merging benchmarks from
SetMuts1MC_i and SetMuts4MC_i).

6

So, for each of the 13 correct benchmarksMC_i , we produce the set SetMutsMC_i = ∪8∈{1,...,5}
SetMuts8MC_i of its faulty versions. Table 5 reports the number of generated faulty benchmarks.

5Note that, for some weights, in 20 attempts we were not able to change the weight in a way that ensures that the safety
rate SR(MC

5
, i, S) falls between 10% and 90%.

6Note that, by following this protocol, we were not able to build faulty benchmarks with more than one faulty weight for
SC#1_iSC and SC#2_iSC, as we do not have enough benchmarks in SetMuts1MC_i to combine. Therefore, only for these
two correct benchmarks, we produce faulty benchmarks by directly changing weights values. Moreover, for SC_R_iSC, we
were not able to produce faulty benchmarks with more than two modifications for which SR is greater than 10%; so, we
only have faulty benchmarks in SetMuts1MC_i and SetMuts2MC_i for SC_R_iSC.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:18 D. Lyu et al.

Table 6. Distribution of Safety Rate SR across the Faulty Benchmarks

SR(MC
5
, i,S)

[10%, 20%) [20%, 30%) [30%, 40%) [40%, 50%) [50%, 60%) [60%, 70%) [70%, 80%) [80%, 90%]

SetMuts1MC_i 12.3% 8.5% 11.0% 9.9% 10.1% 9.0% 14.1% 25.1%
SetMuts2MC_i 4.4% 6.8% 8.5% 7.1% 11.5% 18.7% 24.8% 18.2%
SetMuts3MC_i 14.8% 13.5% 13.3% 10.7% 16.6% 13.3% 9.9% 8.0%
SetMuts4MC_i 20.7% 18.5% 14.1% 12.1% 14.5% 8.0% 6.2% 5.9%
SetMuts5MC_i 23.0% 16.1% 14.5% 15.3% 13.6% 4.9% 6.1% 6.6%

SetMutsMC_i 13.7% 12.3% 11.9% 10.5% 13.6% 12.2% 13.7% 12.2%

Moreover, Table 6 shows, for different intervals of safety rate (first row), the percentage of
faulty models having safety rate in that interval (second row). We observe that, overall (i.e.,
for SetMutsMC_i), we obtain a quite uniform distribution that covers different situations. Regard-
ing the different subsets SetMuts8MC_i (with 8 ∈ {1, . . . , 5}), we observe that, as expected, those
containing more faulty weights tend to have more benchmarks with lower SR.

5.3 Compared Approaches
In the experiments, we assess both versions of SpectAcle, i.e., SpectAcleuw and SpectAclew.
Moreover, we experiment with five different values of k (see Line 13 in Algorithm 1), that we
identify as Low, Mid-low, Mid, Mid-high and High. The values of k depend on the number of the
weights whose forward impact is greater than 0, during the execution of the entire test suite by the
system. Specifically, given a faulty AI-enabled CPSMC

5
, a specification i , and a test suite S, we

executeMC
5

over S and record the number of the weights with a positive forward impact before g ,
denoted as #? . Then, forMC

5
, we set k as 8 × #? , with 8 ∈ {10%, 20%, 30%, 40%, 50%}, to instantiate

Low, Mid-low, Mid, Mid-high and High. The rationale for using #? is to filter out the weights that
have never contributed to the system execution; the justification for selecting at most 50% of these
weights is that higher values may introduce excessive noise into fault localisation (i.e., select too
many unnecessary weights).

We compare SpectAcle with two baseline approaches. First, we compare SpectAcle with
Random selection which randomly selects suspicious weights in ΘB . In order to account for
the non-determinism of Random, by following the guideline [4] of running experiments with
randomised algorithms, we executed the Random approach 100 times for each faulty model, and
we reported average results.

Then, to assess the importance of considering only the top-k weights, we compared SpectAcle
with a simpler version of SpectAcle (called act-based) that considers all the weights that are
activated, similarly to what is done in approaches like DeepFault [15] that, as SpectAcle, is based
on SBFL; we consider a weight activated in a given inference if its forward impact is greater than 0.
We created two versions of act-based: act-baseduw and act-basedw that use the two types of
windows.

5.4 Evaluation Metrics
To assess the effectiveness of SpectAcle and of the baseline approaches (see Section 5.3), for each
set of faulty benchmarks SetMutsMC_i (see Section 5.2.2), we run each compared approach App
over eachMC

5
∈ SetMutsMC_i and assess its Detection Rate (DR) defined as follows. First, we

define the recall of an approach App over a faulty benchmarkMC
5
as the percentage of modified

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:19

weights that have been correctly identified by App in its final resultsΘB (see Line 18 in Algorithm 1),
i.e.,

recall(App,MC
5
) =

of modified weights ofMC
5
correctly identified in ΘB by App

of modified weights inMC
5

The DR is then defined as

DR(App, SetMutsMC_i) =
∑
MC

5
∈SetMutsMC_i

recall (App,MC
5
)

|SetMutsMC_i |
(3)

We calculate the DR for each possible value of s suspicious weights in the final results ΘB .
Subsequently, we compute the Area Under the Curve (AUCDR) described by DR at the increase
of s (we call it AUCDR). The performance of the different approaches will be evaluated based on
their respective AUCDR values. Specifically, in order to compare the performance of the different
approaches, we perform statistical analysis of their AUCDR results. Given two approaches App1 and
App2, we do pairwise comparison between the values of AUCDR across all the faulty benchmarks and
suspiciousness metrics, using the non-parametric test Wilcoxon signed-rank test. We use U = 0.05
as significance level. If the p-value is less than U , we reject the null hypothesis that there is no
significant difference. If there is a significant difference, we use Cohen’s 3 effect size [11] to assess
the strength of the significance. If 3 > 0, then App1 is better; otherwise App2 is better. We interpret
the effect size using the following categories [28]: small if 3 ∈ (0, 0.2), medium if 3 ∈ [0.2, 0.8) and
large if 3 ≥ 0.8.

SpectAcle, as any other SBFL approach, returns false-positive results that depend on the value
of the hyper-parameter s (i.e., number of weights returned in ΘB): the higher the s, the higher
the number of false-positive results. In order to assess this, given an approach App and a faulty
benchmarkMC

5
∈ SetMutsMC_i , we first compute the false detection as the percentage of wrongly

identified weights, i.e.,

falseDetection(App,MC
5
) =

of modified weights ofMC
5
wrongly identified in ΘB by App
|ΘB | .

Then, we compute False Discovery Rate (FDR) as

FDR(App, SetMutsMC_i) =
∑
MC

5
∈SetMutsMC_i

falseDetection(App,MC
5
)

|SetMutsMC_i |
. (4)

Note that a given level of FDR is unavoidable, and primarily depends on the value of s. A higher
value of FDR will usually correspond to a higher value of DR; so, a user must decide s depending
on the desired tradeoff between accuracy and precision of the results. Similarly to what done for
DR, we calculate the FDR for each possible value of s, and compute the AUCDR described by FDR at
the increase of s (we call it AUCFDR). Then, we do statistical analysis among approaches as described
before. In this case, the interpretation of Cohen’s 3 effect size is different, as a lower value of AUCFDR
is better. So, given two approaches App1 and App2, if 3 < 0, then App1 is better; otherwise App2
is better. We interpret the effect size using the following categories [28]: small if 3 ∈ (−0.2, 0),
medium if 3 ∈ (−0.8,−0.2] and large if 3 ≤ −0.8.

5.4.1 Assessment of RQs. In order to answer RQ1, we check the statistical comparison in terms
of AUCDR and AUCFDR, between the different versions of SpectAcle and, respectively, Random and
act-based.

In order to answer RQ2, we check the statistical comparison between the different versions
of SpectAcle using the different values of k, i.e., Low, Mid-low, Mid, Mid-high and High (see
Section 5.3).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:20 D. Lyu et al.

In order to answer RQ3, we check the statistical comparison between SpectAcleuw and
SpectAclew. Moreover, we also report, for each benchmarkMC_i , the percentage of times (across
different faulty benchmarksMC

5
, values of k, suspiciousness metrics SusMetr, and values of s) that

SpectAcleuw outperforms SpectAclew, that they obtain the same results and that SpectAclew
outperforms SpectAcleuw.

In order to answer RQ4, we perform statistical analysis using Wilcoxon signed-rank test and
Cohen’s 3 effect size as described before. However, in this case, given two suspiciousness metrics
SusMetr1 and SusMetr2, we compare the values of AUCDR and AUCFDR across different faulty
benchmarks and settings of SpectAcle.

In order to answer RQ5, we need to select some representative faulty benchmarks to repair,
as repairing all of them would take too much time. We proceed as follows. We first select four
correct benchmarks: for each of the four CPSs, we select a specification and its most complex
DNN controller, namely ACC#2_i1

ACC, AFC#2_i1
AFC, SC#2_iSC and WT#2_iWT. Then, for each

correct benchmarkMC_i , we select one faulty benchmark in SetMuts1MC_i (calledMC
5 1), one in

SetMuts3MC_i (calledMC
5 3) and one in SetMuts5MC_i (calledMC

5 5). Therefore, we have selected 12
faulty benchmarks to repair. Then, for eachMC

5
, among all fault localisation results obtained with

the different versions of SpectAcle, we select those that allow identifying all the modified weights
with the minimum value of top s. Then, we run a search-based DNN repair approach that has been
recently proposed for AI-enabled CPSs [36]; the approach searches for alternative values of some
weights of the DNN controller, with the goal of maximising the number of passing tests in a test
suite S. As search variables, we use the weights ΘB that have been identified by SpectAcle; as test
suite S, we use the same used by SpectAcle (see Section 5.2.2). We use a population size of 50
individuals, and run the approach for 50 generations. Finally, we check the safety rate SR obtained
by the final repaired model.

In order to answer RQ6, we select, for each of the 13 correct benchmarksMC_i , five faulty
benchmarks, one for each set of mutants SetMuts8MC_i (8 ∈ {1, . . . , 5}). Then, we record the time
for executing the test suite (i.e., the simulation of the tests), and the time spent for doing fault
localisation. We report the time for doing fault localisation in terms of time spent for calculating
the forward impact and for calculating the execution spectrum and the suspiciousness score.

5.5 Software and Hardware Specifications
All subject CPSs are implemented in Simulink with dependencies on MATLAB Deep Learning
Toolbox. The experiments were conducted on a server with a 3.3 GHz Intel i9-10940X CPU, 64G
RAM, and two NVIDIA RTX A6000 GPUs, 10 threads.

6 Experimental Evaluation
In this section, we present the experimental results. Before answering the RQs, we first provide a
visual representation of the results. Figure 6 illustrates the overall effectiveness of SpectAcle and of
the compared approaches (see Section 5.3) on the 13 groups of faulty benchmarks (see Section 5.2),
using Kulczynski2 as the suspiciousness metric.7 Each figure represents, for a given benchmark
MC_i , the DR (see Equation 3) of the approaches, i.e., their ability in identifying the faulty weights
of the faulty versions SetMutsMC_i . The G-axis represents the percentage of weights examined in
the final ranking of suspicious weights; this is related to the size s of the set of returned suspicious
weights ΘB in Line 18 of Algorithm 1. The ~-axis represents the DR(App, SetMutsMC_i). We report

7We selected the Kulczynski2 metric, as it is the best metric according to the results of RQ4 in Section 6.4.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:21

Fig. 6. Effectiveness of the compared approaches (in terms of DR) on the 13 groups of faulty benchmarks
(using Kulczynski2 as suspiciousness metric SusMetr).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:22 D. Lyu et al.

Table 7. Effectiveness of the Compared Approaches in Terms of AUCDR with s ≤ 20%, Using Kulczynski2 as
Suspiciousness Metric SusMetr

SpectAcleuw
act-baseduw

SpectAclew
act-basedw Random

Low Mid-Low Mid Mid-High High Low Mid-Low Mid Mid-High High

ACC#1_i1
ACC 0.1806 0.2105 0.1930 0.2297 0.1882 0.0994 0.1847 0.2090 0.2028 0.2377 0.1855 0.0966 0.0998

ACC#1_i2
ACC 0.2301 0.2843 0.2568 0.2813 0.2463 0.1849 0.2335 0.3074 0.2924 0.3179 0.2662 0.2102 0.1008

ACC#2_i1
ACC 0.1660 0.1939 0.1650 0.1528 0.1752 0.1937 0.1648 0.1837 0.1736 0.1467 0.1752 0.1891 0.0993

ACC#2_i2
ACC 0.1448 0.1536 0.1424 0.1744 0.2052 0.2575 0.1429 0.1494 0.1523 0.1947 0.2226 0.2667 0.1008

AFC#1_i1
AFC 0.2400 0.2274 0.1972 0.1800 0.1598 0.1504 0.2383 0.2237 0.1996 0.1874 0.1674 0.1660 0.1017

AFC#1_i2
AFC 0.1612 0.1736 0.1786 0.1690 0.1567 0.1578 0.1620 0.1793 0.1819 0.1730 0.1577 0.1547 0.1004

AFC#2_i1
AFC 0.3653 0.3619 0.3326 0.3056 0.2933 0.2573 0.3696 0.3665 0.3433 0.3175 0.3022 0.2612 0.1010

AFC#2_i2
AFC 0.2692 0.2596 0.2408 0.2199 0.1953 0.1433 0.2800 0.2751 0.2658 0.2532 0.2372 0.1885 0.1005

SC#1_iSC 0.4117 0.3451 0.3372 0.3133 0.2620 0.1901 0.3985 0.3464 0.3454 0.3300 0.2915 0.2211 0.1008

SC#2_iSC 0.6210 0.6201 0.5957 0.5415 0.4571 0.3436 0.6153 0.6089 0.5785 0.5230 0.4273 0.2702 0.0973

SC_'_iSC 0.4424 0.6250 0.5478 0.4784 0.4270 0.1312 0.4475 0.6044 0.5478 0.4784 0.4270 0.1312 0.1114

WT#1_iWT 0.2457 0.2338 0.2058 0.1846 0.1609 0.1361 0.2429 0.2331 0.2208 0.1995 0.1821 0.1745 0.1001

WT#2_iWT 0.2962 0.2755 0.2435 0.1992 0.1802 0.1268 0.3244 0.3137 0.2857 0.2408 0.2206 0.1700 0.0995

The higher the value, the better (the best approach and second best approach are highlighted in gray and light gray, respectively).

results with percentage of examined weights ranging from 0 to 20%, as it is not reasonable to have
a fault localisation approach that considers too many weights. Table 7 reports the corresponding
values of AUCDR.8

In Figure 6, the higher the percentage of weights considered (i.e., the value of s), the higher
the recall, i.e., the probability that an approach returns in ΘB the faulty weights (see Line 18 in
Algorithm 1). However, a higher s also means a higher false detection, i.e., a higher number of
non-faulty weights; in this case, the effort required to identify the real fault among all weights in
ΘB increases (e.g., a repair approach taking in input fault localisation results may need to consider
too many weights for repair). In order to assess this effect, Figure 7 reports, for each benchmark
MC_i and approach App, the FDR (App, SetMutsMC_i) (see Equation 4) for increasing values of s
(up to 20% of weights).9 As explained in Section 5.4, a given level of FDR is unavoidable; the dashed
black line in the figures represents the minimum value of FDR that is achievable. We notice that, in
general, the FDR decreases at the beginning of the plot, until it reaches the value of s that allows
to obtain the best tradeoff between the correctly identified and the wrongly identified weights;
after that point, FDR inevitably increases, as any additional weight returned in ΘB is most likely
not faulty. Table 8 reports the corresponding values of AUCFDR.

In the following, we answer the RQs reported in Section 5.1.

6.1 Answer to RQ1
In this RQ, we are interested in assessing whether the proposed approach is better than the baselines
approaches in detecting the faulty weights. To do this, for each pair of approaches, we conducted
pairwise comparisons between the baseline approaches and all versions of SpectAcle across all the

8In the supplementary Web site [38], we report DR plots and AUCDR tables for all the suspiciousness metrics, for s ≤ 20%
and s ≤ 100%.
9In the supplementary Web site [38], we report FDR plots and AUCFDR tables for all the suspiciousness metrics, for s ≤ 20%
and s ≤ 100%.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:23

Fig. 7. Effectiveness of the compared approaches (in terms of FDR) on the 13 groups of faulty benchmarks
(using Kulczynski2 as suspiciousness metric SusMetr).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:24 D. Lyu et al.

Table 8. Effectiveness of the Compared Approaches in Terms of AUCFDR with s ≤ 20%, Using Kulczynski2 as
Suspiciousness Metric SusMetr

SpectAcleuw
act-baseduw

SpectAclew
act-basedw Random Theoretical

Lower Bound
Low Mid-Low Mid Mid-High High Low Mid-Low Mid Mid-High High

ACC#1_i1
ACC 0.9214 0.9219 0.9243 0.9171 0.9262 0.9383 0.9199 0.9215 0.9233 0.9172 0.9266 0.9380 0.9366 0.7479

ACC#1_i2
ACC 0.9082 0.9071 0.9112 0.9067 0.9116 0.9220 0.9073 0.9015 0.9043 0.8964 0.9055 0.9185 0.9349 0.7276

ACC#2_i1
ACC 0.9668 0.9667 0.9679 0.9672 0.9661 0.9643 0.9672 0.9676 0.9668 0.9678 0.9665 0.9648 0.9715 0.8604

ACC#2_i2
ACC 0.9667 0.9677 0.9673 0.9632 0.9622 0.9580 0.9672 0.9684 0.9666 0.9618 0.9616 0.9582 0.9708 0.8497

AFC#1_i1
AFC 0.9640 0.9648 0.9666 0.9675 0.9689 0.9699 0.9641 0.9651 0.9665 0.9670 0.9682 0.9688 0.9719 0.8697

AFC#1_i2
AFC 0.9672 0.9665 0.9651 0.9661 0.9673 0.9681 0.9673 0.9663 0.9651 0.9659 0.9672 0.9684 0.9712 0.8560

AFC#2_i1
AFC 0.9724 0.9736 0.9748 0.9744 0.9744 0.9760 0.9720 0.9733 0.9743 0.9742 0.9743 0.9759 0.9813 0.9069

AFC#2_i2
AFC 0.9747 0.9757 0.9765 0.9773 0.9781 0.9799 0.9737 0.9742 0.9746 0.9749 0.9756 0.9775 0.9811 0.9012

SC#1_iSC 0.9195 0.9287 0.9243 0.9283 0.9347 0.9442 0.9207 0.9279 0.9232 0.9269 0.9321 0.9417 0.9555 0.7863

SC#2_iSC 0.9462 0.9529 0.9569 0.9616 0.9673 0.9732 0.9469 0.9538 0.9582 0.9628 0.9690 0.9764 0.9804 0.8874

SC_'_iSC 0.4102 0.3369 0.3605 0.3751 0.3888 0.4990 0.4102 0.3438 0.3605 0.3751 0.3888 0.4990 0.5179 0.3078

WT#1_iWT 0.6912 0.6987 0.7082 0.7173 0.7311 0.7407 0.6921 0.6992 0.7016 0.7117 0.7202 0.7226 0.7553 0.3738

WT#2_iWT 0.9562 0.9590 0.9609 0.9631 0.9656 0.9700 0.9545 0.9558 0.9574 0.9596 0.9618 0.9665 0.9708 0.8490

The lower the value, the better (the best approach and second best approach are highlighted in gray and light gray, respectively).

Table 9. RQ1, RQ2, RQ3–Statistical Comparison Between Each Pair of Approaches in Terms of AUCDR

SpectAcleuw act-baseduw SpectAclew act-basedw Random

Low Mid-Low Mid Mid-High High Low Mid-Low Mid Mid-High High

Sp
ec

tA
cl

e u
w Low ≡ 7 33 33 33 33 77 77 3 33 33 33 333

Mid-low 3 ≡ 33 33 33 33 7 77 33 33 33 33 333
Mid 77 77 ≡ 33 33 33 77 77 7 33 33 33 333
Mid-high 77 77 77 ≡ 33 33 77 77 77 3 33 33 333
High 77 77 77 77 ≡ 33 77 77 77 7 3 33 333

act-baseduw 77 77 77 77 77 ≡ 77 77 77 77 77 7 333

Sp
ec

tA
cl

e w Low 33 3 33 33 33 33 ≡ 77 33 33 33 33 333
Mid-low 33 33 33 33 33 33 33 ≡ 33 33 33 33 333
Mid 7 77 3 33 33 33 77 77 ≡ 33 33 33 333
Mid-high 77 77 77 7 3 33 77 77 77 ≡ 33 33 333
High 77 77 77 77 7 33 77 77 77 77 ≡ 33 333

act-basedw 77 77 77 77 77 3 77 77 77 77 77 ≡ 333
Random 777 777 777 777 777 777 777 777 777 777 777 777 ≡

≡: there is no difference between the two approaches. 3, 33, 333: the approach on the rows is significantly better than the approach on
the column with strength small, medium and large. 7, 77, 777: the approach on the row is significantly worse than the approach on the
column with strength small, medium and large.

benchmarks and different suspiciousness metrics in terms of AUCDR and AUCFDR, using the Wilcoxon
signed-rank test and Cohen’s 3 effect size (see Section 5.4). Table 9 reports the results for AUCDR.
Table 10, instead, reports the results for AUCFDR. First of all, by comparing the results in Tables 9
and 10, we observe that the results are almost always consistent: whenever an approach is better in
terms of AUCDR, it is also better in terms of AUCFDR, with similar strength of the effect size.10 So, for
simplicity, in this and in the following RQs, we will focus our analysis on the results of AUCDR, as
also considering AUCFDR does not provide any additional insight.

10The only exceptions are the comparison between SpectAcleuw, Low and SpectAclew, Mid-low, and between
SpectAcleuw, Mid-high and SpectAclew, Mid-high, in which the result changes between AUCDR and AUCFDR . However, in
both cases, the strength of the effect size is small, so not too significant.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:25

Table 10. RQ1, RQ2, RQ3—Statistical Comparison Between Each Pair of Approaches in Terms of AUCFDR

SpectAcleuw act-baseduw SpectAclew act-basedw Random

Low Mid-Low Mid Mid-High High Low Mid-Low Mid Mid-High High

Sp
ec

tA
cl

e u
w Low ≡ 77 3 3 33 33 77 77 7 33 33 33 333

Mid-low 33 ≡ 33 33 33 33 3 77 33 33 33 33 33
Mid 7 77 ≡ 33 33 33 7 77 7 33 33 33 33
Mid-high 7 77 77 ≡ 333 33 7 77 7 33 33 33 33
High 77 77 77 777 ≡ 33 77 77 77 3 3 33 33

act-baseduw 77 77 77 77 77 ≡ 77 77 77 77 77 77 333

Sp
ec

tA
cl

e w Low 33 7 3 3 33 33 ≡ 77 3 33 33 33 333
Mid-low 33 33 33 33 33 33 33 ≡ 33 33 33 33 33
Mid 3 77 3 3 33 33 7 77 ≡ 33 33 33 33
Mid-high 77 77 77 77 7 33 77 77 77 ≡ 33 33 33
High 77 77 77 77 7 33 77 77 77 77 ≡ 3 33

act-basedw 77 77 77 77 77 33 77 77 77 77 7 ≡ 333
Random 777 77 77 77 77 777 777 77 77 77 77 777 ≡

≡: there is no difference between the two approaches. 3, 33, 333: the approach on the rows is significantly better than
the approach on the column with strength small, medium and large. 7, 77, 777: the approach on the row is significantly
worse than the approach on the column with strength small, medium and large.

By looking at Table 9, we observe that any version of SpectAcle is always better than Random,
with large strength. This demonstrates the effectiveness of the proposed fault localisation in finding
faults.

Moreover, we observe that any version of SpectAcle is better than the two versions of the
baseline approach act-based (act-baseduw and act-basedw), always with medium strength. This
shows that the top-k criterion adopted by SpectAcle is more effective than the activation criterion
adopted by act-based for the construction of the spectrum.

Answer to RQ1: SpectAcle can effectively localise the faulty DNN weights in AI-enabled
CPSs and performs better than the two baseline approaches Random and act-based.

6.2 Answer to RQ2
In this RQ, we are interested in assessing which value of hyper-parameter k provides the best results.
As explained in Section 5.3, we experimented with five different values of different magnitudes,
i.e., Low, Mid-low, Mid, Mid-high and High.

In Table 9, we check the comparisons of the different versions of SpectAcleuw among themselves,
and those of the versions of SpectAclew among themselves. We notice that, for both SpectAcleuw
and SpectAclew, Low andMid-low outperform other top-k values, which indicates that a too large
top-k value is not suitable for an effective fault localisation.Mid-low is also always better than Low,
once with small effect size (for SpectAcleuw) and once with medium effect size (for SpectAclew);
still, we think that also Mid-low could be effective in some cases.

These results show that SpectAcle can obtain the best performance without selecting too many
unnecessary weights.

Answer to RQ2: Among the five top-k value categories, Low and Mid-low can localise faulty
weights more effectively.

6.3 Answer to RQ3
In this RQ, we are interested in assessing the effectiveness of SpectAcleuw and SpectAclew, i.e.,
the contribution of using a constant window or the Hamming window (see Section 4.3.1). From
Table 9, we observe that SpectAclew with Low and Mid-low is always better than any version of

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:26 D. Lyu et al.

Table 11. RQ3—Comparison between SpectAcleuw and SpectAclew (Better
Approach in Gray)

uw = w uw = w

ACC#1_i1
ACC 27.2% 10.1% 62.7% ACC#1_i2

ACC 11.0% 8.6% 80.4%
ACC#2_i1

ACC 50.4% 10.5% 39.1% ACC#2_i2
ACC 34.0% 10.8% 55.2%

AFC#1_i1
AFC 29.2% 4.2% 66.6% AFC#1_i2

AFC 22.4% 0.5% 77.0%
AFC#2_i1

AFC 30.5% 1.5% 68.0% AFC#2_i2
AFC 10.3% 0.6% 89.1%

SC#1_iSC 51.3% 1.6% 47.1% SC#2_iSC 63.1% 10.7% 26.2%
SC_'_iSC 27.0% 48.0% 25.0% WT#1_iWT 23.2% 0.8% 76.0%
WT#2_iWT 9.9% 2.1% 88.0% All 31.8% 5.3% 62.9%

SpectAcleuw, almost always with strength medium (except for one case in which the strength is
small).

To better analyse the results, in Table 11, we report, for each benchmarkMC_i , the percentage
of times (across different values of k, suspiciousness metrics, and values of s) that SpectAcleuw is
better than SpectAclew (column uw), that SpectAclew is better than SpectAcleuw (column w)
and that they are the same (column =). We observe that SpectAclew outperforms SpectAcleuw
on 9/13 of the benchmarks, to varying degrees, ranging from a 21.2% difference (ACC#2_i2

ACC) to a
78.8% (AFC#2_i2

AFC). By considering all the benchmarks together (line ‘All’), SpectAclew is better
in 62.9% of the cases (i.e., same benchmark, same k, same suspiciousness metric, and same s), while
SpectAcleuw is better in only 31.8% of the cases.

These results confirm our intuition that weighting more the weights that are relevant close
to the violation episode (as done by the Hamming window used in SpectAclew) is better than
considering all the inferences equally (as done by the constant window used in SpectAcleuw).

Answer to RQ3: SpectAclew outperforms SpectAcleuw in most cases, which confirms that
the Hamming window can enhance the effectiveness of SpectAcle.

6.4 Answer to RQ4
In this RQ, we are interested in assessing the influence of the different suspiciousness metrics on
the effectiveness of SpectAcle. Similarly to the previous RQs, we performed pairwise comparisons
between the five suspiciousness metrics across all the benchmarks and different hyper-parameters
in terms of AUCDR and AUCFDR, using the Wilcoxon signed-rank test and the Cohen’s 3 effect size
(see Section 5.4). Results are reported in Tables 12 and 13, respectively.

First of all, by comparing the two tables, we observe that the results are almost always consistent
(except for the comparison of D* and Jaccard), i.e., whenever an approach is better of another in
terms of AUCDR, it is also better in terms of AUCFDR, with almost the same strength of effect size. So,
for simplicity, in the following we will focus on the description of the results of AUCDR.

From Table 12, we observe that Tarantula is the worst metric, never better than any other metric.
This result seems to be in agreement with reports about the low effectiveness of Tarantula in
SBFL for classic code [29, 46]. Kulczynski2, instead, is the best metric, always better than the other
metrics (half of the times with strength medium). A possible explanation is that, unlike Tarantula,
Kulczynski2 gives more importance to ef (i.e., the weights that are relevant in failure test cases)
which has been shown to be important in SBFL. On the other hand, Ochiai and D*, that also focus

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:27

Table 12. RQ4—Statistical Comparison between Each Pair of
Suspiciousness Metrics in Terms of AUCDR

Tarantula Ochiai D* Jaccard Kulczynski2

Tarantula ≡ 77 77 77 77
Ochiai 33 ≡ 33 3 7
D* 33 77 ≡ 7 77
Jaccard 33 7 3 ≡ 7
Kulczynski2 33 3 33 3 ≡

≡: there is no difference between the two metrics. 3, 33, 333: the metric on
the rows is significantly better than the metric on the column with strength small,
medium and large. 7, 77, 777: the metric on the row is significantly worse than the
metric on the column with strength small, medium and large.

Table 13. RQ4—Statistical Comparison between Each Pair of
Suspiciousness Metrics in Terms of AUCFDR

Tarantula Ochiai D* Jaccard Kulczynski2

Tarantula ≡ 77 77 77 77
Ochiai 33 ≡ 3 3 7
D* 33 7 ≡ 3 77
Jaccard 33 7 7 ≡ 7
Kulczynski2 33 3 33 3 ≡

≡: there is no difference between the two metrics. 3, 33, 333: the metric on
the rows is significantly better than the metric on the column with strength small,
medium and large. 7, 77, 777: the metric on the row is significantly worse than the
metric on the column with strength small, medium and large.

on ef , do not obtain such good results. The reason is that they may focus too much on ef [59]; while
this is very important in fault localisation for code, it can be excessive for DNNs. These results
combined show that Kulczynski2 provides the right balance between ef and ep.

Answer to RQ4: Among the five suspiciousness metrics, Kulczynski2 is the most effective,
while Tarantula is always the worst.

6.5 Answer to RQ5
In this RQ, we are interested in assessing whether the weights identified by SpectAcle can be used
to improve the performance of the AI-enabled CPS. As explained in Section 5.4.1, we select three
faulty benchmarks (MC

5 1,M
C
5 3, andM

C
5 5) for each of the four CPSs (for each CPS, we select the one

with the most complex DNN controller), and we repair it using the search-based approach proposed
in [36], using the suspicious weights returned by SpectAcle as search variables. Table 14 reports
the experimental results. The table reports the values of the safety rate SR on the original faulty
AI-enabled CPS before repair, and on the AI-enabled CPS repaired using the weights identified
by SpectAcle. We observe that the repair process is almost always able to completely repair the
system (i.e., SR = 100%); the only exception isMC

5 5 of AFC#2_i1
AFC for which the final SR is 82%.

This shows that SpectAcle can indeed identify weights that are responsible for misbehaviour.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:28 D. Lyu et al.

Table 14. RQ5—Results of Repair of AI-Enabled CPSs Using the Weights Identified by SpectAcle

ACC#2_i1
ACC AFC#2_i1

AFC SC#2_iSC WT#2_iWT

MC
5 1 MC

5 3 MC
5 5 MC

5 1 MC
5 3 MC

5 5 MC
5 1 MC

5 3 MC
5 5 MC

5 1 MC
5 3 MC

5 5

SR before repair 73 11 55 47 21 53 16 74 82 68 64 44
SR after repair 100 100 100 100 100 82 100 100 100 100 100 100

Table 15. RQ6—Computational Cost of SpectAcle (Secs.)

S Execution Fault Localisation

Forward Impact Execution Spectrum and
Suspiciousness Score

ACC#1_i1
ACC 303.1 216.4 28.5

ACC#1_i2
ACC 306.7 246.2 41.8

ACC#2_i1
ACC 330.9 281.5 44.7

ACC#2_i2
ACC 340.7 259.9 61.3

AFC#1_i1
AFC 339.6 135.7 37.8

AFC#1_i2
AFC 343.2 161.8 46.8

AFC#2_i1
AFC 389.7 226.2 45.1

AFC#2_i2
AFC 382.4 242.1 55.9

SC#1_iSC 324.1 257.2 47.5
SC#2_iSC 389.0 256.6 83.0
SC_R_iSC 29.8 20.2 14.5
WT#1_iWT 234.5 76.7 9.3
WT#2_iWT 337.3 82.7 27.2

Avg. 311.6 189.5 41.8

Answer to RQ5: SpectAcle identify weights that are indeed responsible for the misbehaviour
of the AI-enabled CPS and, therefore, can be targeted when improving the system performance
by, e.g., search-based repair.

6.6 Answer to RQ6
In this RQ, we are interested in assessing the computational cost of SpectAcle. Table 15 reports, for
each correct benchmarkMC_i , the average time taken by SpectAcle across five faulty benchmarks
ofMC_i . Specifically, the table reports the time spent in executing the test suite S, and the time
spent in fault localisation.This latter is further divided into the time spent in calculating the forward
impact, and the time spent in calculating the execution spectrum and the suspiciousness score.
We observe that most of time is taken by the execution of the test suite S, taking on average 311.6
seconds; this time will increase proportionally with the size S. Regarding the actual time taken
by fault localisation, we observe that the forward impact calculation is the most costly one (189.5
seconds on average). On the other hand, the computation of the spectrum and of the suspiciousness
score is faster (41.8 seconds on average). Regarding the different benchmarks, we observe that
those with smaller DNN controllers (such as SC_R, WT#1, and WT#2) tend to take less time in
fault localisation; this is reasonable, as they contain less weights that need to be checked. On the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:29

other hand, the execution time of fault localisation also depends on the number of failing tests;
indeed, on failing tests, fewer inferences are checked (i.e., those till the specification violation) in
comparison to the passing tests, so reducing time.

Answer to RQ6: The most computationally expensive part of SpectAcle is the execution of
the test suite, followed by computation of the forward impact.

7 Threats to validity
Here, we discuss some threats that can affect the validity of the approach, following the typical
classification of construct validity, conclusion validity, internal validity and external validity [54].

7.1 Construct Validity
The metrics used in the assessment of the approach could not reflect the object of the investigation.
In our case, since we are interested in measuring the effectiveness of SpectAcle, we mutate some
weights of the target DNN and examine whether those mutated weights can be localised, i.e.,
ranking at the top s. In this sense, the results largely rely on the value s and the mutations we
made. To mitigate this threat, we examine the performance on different settings of top s, as done in
other DNN fault localisation works [15]. Moreover, SpectAcle requires the setting of a threshold
k to decide whether a weight can be counted as executed or not. A too small k could results in
considering too few weights as executed. To mitigate this threat, we tried different top-k values
and checked the performance of SpectAcle.

7.2 Conclusion Validity
The random behaviour of the Random approach can affect the final result. Following the guideline
of Arcuri and Briand [4], we executed the Random approach 100 times for each faulty model, and
we reported average results. SpectAcle and act-based, instead, are deterministic and there is no
need to repeat them multiple times.

7.3 Internal Validity
A threat of this type could be that the experimental results are obtained by chance. For example, an
instrumentation threat (e.g., a faulty implementation) may affect the execution of the experiments. To
mitigate this threat, we have extensively tested the implementation of all the compared approaches.

7.4 External Validity
One such a threat is related to the generalisability of SpectAcle. To mitigate this issue, we conduct
our work with a general model of AI-enabled CPS that contains a black-box physical plant and a
DNN controller. Moreover, we experimented with different types of controllers, i.e., feed-forward
neural networks and recurrent neural networks.

8 Related Work
In this section, we discuss related work from two perspectives: fault localisation approaches for
single-inference DNNs (Section 8.1) and fault localisation approaches for classic CPSs (Section 8.1).

8.1 DNN Fault Localisation
Different works have been proposed for DNN fault localisation.

A first group of approaches target neurons and weights of the DNN model in the localisation.
Ma et al. [39] introduce MODE, which utilises state-differential analysis between misclassification
and correct classification to identify faulty neurons. Eniser et al. [15] propose DeepFault that

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

110:30 D. Lyu et al.

localises suspicious neurons, by building their spectra based on the activation status and using
SBFL metrics (Tarantula, Ochiai and D*) to assign a suspiciousness score. Duran et al. [14] in-
troduce DeepFaultGr that extends DeepFault, and show that doing fault localisation for different
misclassifications together can produce sub-optimal results, because of the masking effect between
different misclassifications. Sohn et al. [47] propose Arachne for repair of DNN models, in which
they also handle the fault localisation problem using gradient loss and forward impact to identify
the faulty neuron weights. With the previous approaches, SpectAcle shares the fact that its target
weights (as Arachne) and that uses SBFL (as DeepFault and DeepFaultGr). However, there are three
main differences: they rely on ground-truth labels, while SpectAcle relies on the system level
specification; they consider single inferences of the DNN, while SpectAcle considers sequences of
inferences; SpectAcle gives more or less importance to an inference in the spectrum depending
on the time when the inference occurred.

A second group of approaches, instead, target faults in the configuration of the Deep Learning
(DL) program, like wrong activation function or missing/redundant/wrong layer. For example,
Wardat et al. [53] propose DeepLocalize that targets the faults in DNN model structures (e.g.,
faulty hyper-parameter), by analysing the traces produced by the DNN over training. Wardat et al.
[52] propose DeepDiagnosis that extends DeepLocalize to detect more faults during training and,
moreover, it also suggests possible actions to fix the fault. Cao et al. [10] introduce DeepFD, that,
similarly to DeepLocalize and DeepDiagnosis, targets faults in DL programs. However, DeepFD does
not use a fixed set of detection rules, but adopts a learning-based fault localisation framework
which monitors the DNN model training and infers the suspicious fault types. Ghanbari et al. [18]
propose deepmufl, which employs Mutation-Based Fault Localisation (MBFL) to localise the
faults in DNN models introduced by wrong DL program configuration. Specifically, it mutates
the faulty DNN models and implements two commonly used approaches in MBFL, Metallaxis and
MUSE, and then filters out the most suspicious elements based on suspiciousness values of different
mutants. These approaches are different from SpectAcle, as their assumption is that the fault is in
the DL program; SpectAcle, instead, should be used to detect faults in the setting of the parameters
of the model. In this sense, the approaches are complementary.

In comparison to all previous works of both groups, fault localisation in AI-enabled CPS faces
new challenges, as stated in Section 1, including the lack of ground truth for DNN controllers, and
the fact that a system execution involves a sequence of DNN controller inferences. These challenges
make it impossible to apply the existing DNN fault localisation approaches in our context.

8.2 Fault Localisation of Classic CPSs
For classic CPS, there are several lines of work on their fault localisation. First, Liu et al. [32]
present an iterative approach for localising faults in Simulink models by utilising decision trees; the
approach uses decision trees to cluster similar failures and adopts two selection criteria to select
the best cluster for fault localisation. Liu et al. [34] propose a fault localisation approach based
on dynamic model slicing and statistical debugging; dynamic slicing identifies, for each test case,
the blocks that are executed; then, classical suspiciousness metrics are used to rank the blocks in
terms of suspiciousness. Liu et al. [33] propose a search algorithm to generate small and diverse
test suites for improving fault localisation accuracy.

Second, Bartocci et al. [5] integrate STL monitoring into CPS fault localisation to refine the
results. Later, they [6] develop CPSDebug to detect failures in Simulink models. Recently, Bartocci
et al. [7] propose a search-based method to generate a passing test case that closely resembles
the original failing test, which can extract precise information about the location of faults in the
system.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

Fault Localisation of AI-Enabled CPS 110:31

All these works target CPS models (e.g., Simulink) that contain classic CPS blocks only, and so
they are not applicable to AI-enabled CPSs. Indeed, the uninterpretable decision logic of DNNs
makes it difficult to determine which DNN components are responsible for an inference. In our
work, we propose using forward impact as a measurement for the influence of each neuron weights
to the DNN inference.

9 Conclusion and Future Work
In this work, we propose the framework SpectAcle, that localises the DNN controller weights
responsible for the system specification violation, by exploiting the sequence of DNN controller
inferences. Our technical novelty consists in the construction of the execution spectrum, in which
we take the system-level specification as the correctness criterion for the DNN controller, and use
forward impact to calculate the relevance of each neuron weight to the DNN controller inference.
Our experimental results show the effectiveness of SpectAcle, based on the comparison with two
baseline approaches.

As a future work, we plan to devise other methods for computing forward impact, because this is
the core factor that affects the effectiveness of the approach. For example, in this work, we consider
the activation of a neuron as a possible cause of a wrong DNN control action. However, it could be
that the non-activation of a neuron is responsible for a wrong action. As future work, we plan to
devise a fault localisation approach in which also non-activation is considered as a possible cause
of misbehaviour.

In SpectAcle, we consider all the inferences preceding the violation to do fault localisation.
However, since it is more likely that a wrong control decision happens close to the violation, in
SpectAclew we use the Hamming window to weight more the inferences close to the violation.
Since the tests considered in this work are not too long (i.e., they are just long enough to check
whether they satisfy the specification), such a weighted approach is already very effective, as shown
by our experiments. Still, the approach could benefit from a more detailed identification of the
moment ‘when’ the control decision starts to be responsible for the misbehaviour. The theory of
actual causality by Halpern and Pearl [21] requires three conditions to hold to claim that an event
� is the cause of an event �: (C1)� must occur before �; (C2)if� does not happen, but all the other
conditions of the state remain the same, then � does not happen; (C3) � is minimal, i.e., there is
no subset of � that satisfies C1 and C2. In our context, we consider � as the control action and �

as the violation of the specification. It is easy to see that C1 holds, as we check the time-points
preceding the violation. However, guaranteeing condition C2 is very difficult, as it requires to find,
for each observed control action � in a test, another test in which only the control action � does
not happen, but the remaining part of the state is the same. For an AI-enabled CPS, this would
require to override the behaviour of the DNN controller and force a different control action to see
if the violation does not occur. We leave as future work to design an approach that can do this in
an effective manner.

References
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A practical evaluation of spectrum-based

fault localization. Journal of Systems and Software 82, 11 (2009), 1780–1792. DOI: https://doi.org/10.1016/j.jss.2009.06.035
[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. Van Gemund. 2006. An evaluation of similarity coefficients for software

fault localization. In Proceedings of the 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC
’06). IEEE, 39–46. DOI: https://doi.org/10.1109/PRDC.2006.18

[3] J. Allen. 1977. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Transactions
on Acoustics, Speech, and Signal Processing 25, 3 (1977), 235–238. DOI: https://doi.org/10.1109/TASSP.1977.1162950

[4] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11). ACM,
New York, NY, 1–10. DOI: https://doi.org/10.1145/1985793.1985795

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/TASSP.1977.1162950
https://doi.org/10.1145/1985793.1985795

110:32 D. Lyu et al.

[5] Ezio Bartocci, Thomas Ferrère, Niveditha Manjunath, and Dejan Ničković. 2018. Localizing faults in simulink/stateflow
models with STL. In Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (Part
of CPS Week) (HSCC ’18). ACM, New York, NY, 197–206. DOI: https://doi.org/10.1145/3178126.3178131

[6] Ezio Bartocci, Niveditha Manjunath, Leonardo Mariani, Cristinel Mateis, and Dejan Ničković. 2019. Automatic failure
explanation in CPS models. In Software Engineering and Formal Methods. Peter Csaba Ölveczky and Gwen Salaün
(Eds.), Springer International Publishing, Cham, 69–86.

[7] Ezio Bartocci, Leonardo Mariani, Dejan Ničković, and Drishti Yadav. 2022. Search-based testing for accurate fault
localization in CPS. In Proceedings of the 2022 IEEE 33rd International Symposium on Software Reliability Engineering
(ISSRE ’22), 145–156. DOI: https://doi.org/10.1109/ISSRE55969.2022.00024

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence
D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars.
arXiv:1604.07316. Retrieved from http://arxiv.org/abs/1604.07316

[9] Davide Li Calsi, Matias Duran, Xiao-Yi Zhang, Paolo Arcaini, and Fuyuki Ishikawa. 2023. Distributed repair of deep
neural networks. In Proceedings of the 2023 IEEE Conference on Software Testing, Verification and Validation (ICST ’23).
IEEE, IEEE Computer Society, Los Alamitos, CA, 83–94.

[10] Jialun Cao, Meiziniu Li, Xiao Chen, Ming Wen, Yongqiang Tian, Bo Wu, and Shing-Chi Cheung. 2022. DeepFD:
Automated fault diagnosis and localization for deep learning programs. In Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22). ACM, New York, NY, 573–585. DOI: https://doi.org/10.1145/3510003.
3510099

[11] Jacob Cohen. 1969. Statistical Power Analysis for the Behavioral Sciences. Academic Press, New York.
[12] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic over real-valued signals. In Proceedings

of the 8th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS ’10). Springer-Verlag,
Berlin, 92–106.

[13] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. 2019. Compositional falsification of cyber-physical systems
with machine learning components. Journal of Automated Reasoning 63, 4 (Dec. 2019), 1031–1053. DOI: https:
//doi.org/10.1007/s10817-018-09509-5

[14] Matias Duran, Xiao-Yi Zhang, Paolo Arcaini, and Fuyuki Ishikawa. 2021. What to blame? On the granularity of fault
localization for deep neural networks. In Proceedings of the 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE ’21), 264–275. DOI: https://doi.org/10.1109/ISSRE52982.2021.00037

[15] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. 2019. DeepFault: Fault localization for deep neural networks. In
Fundamental Approaches to Software Engineering. Reiner Hähnle and Wil van der Aalst (Eds.), Springer International
Publishing, Cham, 171–191.

[16] Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Federico Formica, Jun Inoue, Tanmay Khandait, Mohammad Mahdi
Mahboob, Claudio Menghi, Giulia Pedrielli, Masaki Waga, et al. 2022. ARCH-COMP 2022 category report: Falsification
with ubounded resources. In Proceedings of 9th International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH ’22). Goran Frehse, Matthias Althoff, Erwin Schoitsch, and Jeremie Guiochet (Eds.), EPiC Series
in Computing, Vol. 90, EasyChair, 204–221. DOI: https://doi.org/10.29007/fhnk

[17] Georgios E. Fainekos and George J. Pappas. 2009. Robustness of temporal logic specifications for continuous-time
signals. Theoretical Computer Science 410, 42 (Sep. 2009), 4262–4291. DOI: https://doi.org/10.1016/j.tcs.2009.06.021

[18] Ali Ghanbari, Deepak-George Thomas, Muhammad Arbab Arshad, and Hridesh Rajan. 2023. Mutation-based fault
localization of deep neural networks. In Proceedings of the 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’23), 1301–1313. DOI: https://doi.org/10.1109/ASE56229.2023.00171

[19] Philip E. Gill, Walter Murray, and Margaret H. Wright. 2019. Practical Optimization. SIAM.
[20] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. 2017. Deep reinforcement learning for robotic

manipulation with asynchronous off-policy updates. In Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA ’17). IEEE Press, 3389–3396. DOI: https://doi.org/10.1109/ICRA.2017.7989385

[21] Joseph Y. Halpern. 2016. Actual Causality. The MIT Press.
[22] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019. ReachNN: Reachability analysis of neural-

network controlled systems. ACM Transactions on Embedded Computing Systems 18, 5s, Article 106 (Oct. 2019), 22
pages. DOI: https://doi.org/10.1145/3358228

[23] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. 2014. Powertrain control verifi-
cation benchmark. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control
(HSCC ’14). ACM, New York, NY, 253–262. DOI: https://doi.org/10.1145/2562059.2562140

[24] Taylor T. Johnson, Diego Manzanas Lopez, Luis Benet, Marcelo Forets, Sebastián Guadalupe, Christian Schilling,
Radoslav Ivanov, Taylor J. Carpenter, James Weimer, and Insup Lee. 2021. ARCH-COMP21 category report: Artificial
Intelligence and Neural Network Control Systems (AINNCS) for continuous and hybrid systems plants. In Proceedings

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1109/ISSRE55969.2022.00024
http://arxiv.org/abs/1604.07316
https://doi.org/10.1145/3510003.3510099
https://doi.org/10.1145/3510003.3510099
https://doi.org/10.1007/s10817-018-09509-5
https://doi.org/10.1007/s10817-018-09509-5
https://doi.org/10.1109/ISSRE52982.2021.00037
https://doi.org/10.29007/fhnk
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1109/ASE56229.2023.00171
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1145/3358228
https://doi.org/10.1145/2562059.2562140

Fault Localisation of AI-Enabled CPS 110:33

of the 8th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH ’21). Goran Frehse
and Matthias Althoff (Eds.), EPiC Series in Computing, Vol. 80, EasyChair, 90–119. DOI: https://doi.org/10.29007/kfk9

[25] Taylor T. Johnson, Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Elena Botoeva, Francesco Leofante,
Amir Maleki, Chelsea Sidrane, Jiameng Fan, and Chao Huang. 2020. ARCH-COMP20 category report: Artificial
Intelligence and Neural Network Control Systems (AINNCS) for continuous and hybrid systems plants. In Proceedings
of the 7th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH ’20). Goran Frehse
and Matthias Althoff (Eds.), EPiC Series in Computing, Vol. 74, EasyChair, 107–139. DOI: https://doi.org/10.29007/9xgv

[26] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization.
In Proceedings of the 24th International Conference on Software Engineering (ICSE ’02). ACM, New York, NY, 467–477.
DOI: https://doi.org/10.1145/581339.581397

[27] Tanmay Khandait, Federico Formica, Paolo Arcaini, Surdeep Chotaliya, Georgios Fainekos, Abdelrahman Hekal, Atanu
Kundu, Ethan Lew, Michele Loreti, Claudio Menghi, et al. 2024. ARCH-COMP 2024 category report: Falsification. In
Proceedings of the 11th International Workshop on Applied Verification for Continuous and Hybrid Systems. Goran Frehse
andMatthias Althoff (Eds.), EPiC Series in Computing, Vol. 103, EasyChair, 122–144. DOI: https://doi.org/10.29007/hgfv

[28] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton, Stuart Charters, Shirley Gibbs, and
Amnart Pohthong. 2017. Robust statistical methods for empirical software engineering. Empirical Software Engineering
22 (2017), 579–630.

[29] Tien-Duy B. Le, Ferdian Thung, and David Lo. 2013. Theory and practice, do they match? A case with spectrum-based
fault localization. In Proceedings of the 2013 IEEE International Conference on Software Maintenance (ICSM ’13). IEEE
Computer Society, 380–383. DOI: https://doi.org/10.1109/ICSM.2013.52

[30] Davide Li Calsi, Matias Duran, Thomas Laurent, Xiao-Yi Zhang, Paolo Arcaini, and Fuyuki Ishikawa. 2023. Adaptive
search-based repair of deep neural networks. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’23). ACM, New York, NY, 1527–1536. DOI: https://doi.org/10.1145/3583131.3590477

[31] Tsang-Wei Lin, Sheue-Ling Hwang, and Paul A. Green. 2009. Effects of time-gap settings of adaptive cruise control
(ACC) on driving performance and subjective acceptance in a bus driving simulator. Safety Science 47, 5 (2009),
620–625. DOI: https://doi.org/10.1016/j.ssci.2008.08.004

[32] Bing Liu, Lucia, Shiva Nejati, Lionel Briand, and Thomas Bruckmann. 2016. Localizing multiple faults in simulink
models. In Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER ’16), Vol. 1, 146–156. DOI: https://doi.org/10.1109/SANER.2016.38

[33] Bing Liu, Lucia, Shiva Nejati, and Lionel C. Briand. 2017. Improving fault localization for Simulink models using
search-based testing and prediction models. In Proceedings of the 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER ’17), 359–370. DOI: https://doi.org/10.1109/SANER.2017.7884636

[34] Bing Liu, Lucia, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2016. Simulink fault localization: An iterative
statistical debugging approach. Software Testing, Verification and Reliability 26, 6 (2016), 431–459.

[35] Chen Lv, Yang Xing, Junzhi Zhang, Xiaoxiang Na, Yutong Li, Teng Liu, Dongpu Cao, and Fei-Yue Wang. 2018.
Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical
cyber-physical system. IEEE Transactions on Industrial Informatics 14, 8 (2018), 3436–3446. DOI: https://doi.org/10.
1109/TII.2017.2777460

[36] Deyun Lyu, Zhenya Zhang, Paolo Arcaini, Fuyuki Ishikawa, Thomas Laurent, and Jianjun Zhao. 2024. Search-
based repair of DNN controllers of AI-enabled cyber-physical systems guided by system-level specifications. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’24). ACM, New York, NY, 1435–1444.
DOI: https://doi.org/10.1145/3638529.3654078

[37] Deyun Lyu, Zhenya Zhang, Paolo Arcaini, Xiao-Yi Zhang, Fuyuki Ishikawa, and Jianjun Zhao. 2024. Code and
benchmarks of the paper “SpectAcle: Fault localisation of AI-enabled CPS by exploiting sequences of DNN controller
inferences”. Retrieved from https://github.com/lyudeyun/Spectacle

[38] Deyun Lyu, Zhenya Zhang, Paolo Arcaini, Xiao-Yi Zhang, Fuyuki Ishikawa, and Jianjun Zhao. 2024. Supplementary
material for the paper “SpectAcle: Fault localisation of AI-enabled CPS by exploiting sequences of DNN controller
inferences”. Retrieved from https://sites.google.com/view/spectacle4aicps

[39] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: Automated neural
network model debugging via state differential analysis and input selection. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
175–186.

[40] Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Xin Chen, Jiameng Fan, Marcelo Forets, Chao Huang, Taylor T.
Johnson, Tobias Ladner, Wenchao Li, et al. 2022. ARCH-COMP22 category report: Artificial Intelligence and Neural
Network Control Systems (AINNCS) for continuous and hybrid systems plants. In Proceedings of 9th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH ’22). Goran Frehse, Matthias Althoff,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

https://doi.org/10.29007/kfk9
https://doi.org/10.29007/9xgv
https://doi.org/10.1145/581339.581397
https://doi.org/10.29007/hgfv
https://doi.org/10.1109/ICSM.2013.52
https://doi.org/10.1145/3583131.3590477
https://doi.org/10.1016/j.ssci.2008.08.004
https://doi.org/10.1109/SANER.2016.38
https://doi.org/10.1109/SANER.2017.7884636
https://doi.org/10.1109/TII.2017.2777460
https://doi.org/10.1109/TII.2017.2777460
https://doi.org/10.1145/3638529.3654078
https://github.com/lyudeyun/Spectacle
https://sites.google.com/view/spectacle4aicps

110:34 D. Lyu et al.

Erwin Schoitsch, and Jeremie Guiochet (Eds.), EPiC Series in Computing, Vol. 90, EasyChair, 142–184. DOI: https:
//doi.org/10.29007/wfgr

[41] Diego Manzanas Lopez, Matthias Althoff, Marcelo Forets, Taylor T. Johnson, Tobias Ladner, and Christian Schilling.
2023. ARCH-COMP23 category report: Artificial Intelligence and Neural Network Control Systems (AINNCS) for
continuous and hybrid systems plants. In Proceedings of 10th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH ’23). Goran Frehse and Matthias Althoff (Eds.), EPiC Series in Computing, Vol.
96, EasyChair, 89–125. DOI: https://doi.org/10.29007/x38n

[42] Mathworks. 2023. Simulink. Retrieved from https://www.mathworks.com/products/simulink.html
[43] Claudio Menghi, Paolo Arcaini, Walstan Baptista, Gidon Ernst, Georgios Fainekos, Federico Formica, Sauvik Gon,

Tanmay Khandait, Atanu Kundu, Giulia Pedrielli, et al. 2023. ARCH-COMP23 category report: Falsification. In
Proceedings of 10th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH ’23).
Goran Frehse and Matthias Althoff (Eds.), EPiC Series in Computing, Vol. 96, EasyChair, 151–169. DOI: https:
//doi.org/10.29007/6nqs

[44] Martin Fodslette Møller. 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6,
4 (1993), 525–533.

[45] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-based software diagnosis. ACM
Transactions on Software Engineering and Methodology 20, 3, Article 11 (Aug. 2011), 32 pages. DOI: https://doi.org/10.
1145/2000791.2000795

[46] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D. Ernst, Deric Pang, and Benjamin
Keller. 2017. Evaluating and improving fault localization. In Proceedings of the 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE ’17). IEEE, 609–620.

[47] Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2023. Arachne: Search-based repair of deep neural networks. ACM
Transactions on Software Engineering and Methodology 32, 4, Article 85 (May 2023), 26 pages. DOI: https://doi.org/10.
1145/3563210

[48] Jiayang Song, Deyun Lyu, Zhenya Zhang, Zhijie Wang, Tianyi Zhang, and Lei Ma. 2022. When cyber-physical systems
meet AI: A benchmark, an evaluation, and a way forward. In Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22). ACM, New York, NY, 343–352. DOI: https:
//doi.org/10.1145/3510457.3513049

[49] Shogo Tokui, Susumu Tokumoto, Akihito Yoshii, Fuyuki Ishikawa, Takao Nakagawa, Kazuki Munakata, and Shinji
Kikuchi. 2022. NeuRecover: Regression-controlled repair of deep neural networks with training history. In Proceedings
of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER ’22). IEEE Computer
Society, Los Alamitos, CA, 1111–1121. DOI: https://doi.org/10.1109/SANER53432.2022.00128

[50] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and Xenofon Koutsoukos.
2019. Safety verification of cyber-physical systemswith reinforcement learning control.ACMTransactions on Embedded
Computing Systems 18, 5s, Article 105 (Oct. 2019), 22 pages. DOI: https://doi.org/10.1145/3358230

[51] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang,
Stanley Bak, and Taylor T. Johnson. 2020. NNV: The Neural Network Verification tool for deep neural networks and
learning-enabled cyber-physical systems. In Proceedings of the International Conference on Computer Aided Verification.
Springer, 3–17.

[52] Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. DeepDiagnosis: Automatically diagnosing
faults and recommending actionable fixes in deep learning programs. In Proceedings of the 44th International Conference
on Software Engineering (ICSE ’22). ACM, New York, NY, 561–572. DOI: https://doi.org/10.1145/3510003.3510071

[53] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault localization for deep neural networks.
In Proceedings of the 43rd International Conference on Software Engineering (ICSE ’21). IEEE Press, 251–262. DOI:
https://doi.org/10.1109/ICSE43902.2021.00034

[54] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and Anders Wessln. 2012. Experimentation
in Software Engineering. Springer Publishing Company, Incorporated.

[55] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method for effective software fault
localization. IEEE Transactions on Reliability 63, 1 (2013), 290–308.

[56] W. Eric Wong, Vidroha Debroy, Yihao Li, and Ruizhi Gao. 2012. Software fault localization using DStar (D*). In
Proceedings of the 2012 IEEE 6th International Conference on Software Security and Reliability (SERE ’12). IEEE Computer
Society, 21–30. DOI: https://doi.org/10.1109/SERE.2012.12

[57] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization.
IEEE Transactions on Software Engineering 42, 8 (Aug. 2016), 707–740. DOI: https://doi.org/10.1109/TSE.2016.2521368

[58] Shakiba Yaghoubi and Georgios Fainekos. 2019. Gray-box adversarial testing for control systems with machine
learning components. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control (HSCC ’19). ACM, New York, NY, 179–184. DOI: https://doi.org/10.1145/3302504.3311814

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

https://doi.org/10.29007/wfgr
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/x38n
https://www.mathworks.com/products/simulink.html
https://doi.org/10.29007/6nqs
https://doi.org/10.29007/6nqs
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/3563210
https://doi.org/10.1145/3563210
https://doi.org/10.1145/3510457.3513049
https://doi.org/10.1145/3510457.3513049
https://doi.org/10.1109/SANER53432.2022.00128
https://doi.org/10.1145/3358230
https://doi.org/10.1145/3510003.3510071
https://doi.org/10.1109/ICSE43902.2021.00034
https://doi.org/10.1109/SERE.2012.12
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/3302504.3311814

Fault Localisation of AI-Enabled CPS 110:35

[59] Xiao-Yi Zhang and Mingyue Jiang. 2021. SPICA: A methodology for reviewing and analysing fault localisation
techniques. In Proceedings of the 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME
’21). IEEE, 366–377. DOI: https://doi.org/10.1109/ICSME52107.2021.00039

[60] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao. 2023. FalsifAI: Falsification of
AI-enabled hybrid control systems guided by time-aware coverage criteria. IEEE Transactions on Software Engineering
49, 4 (2023), 1842–1859. DOI: https://doi.org/10.1109/TSE.2022.3194640

Received 1 March 2024; revised 7 August 2024; accepted 2 November 2024

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 4, Article 110. Publication date: April 2025.

https://doi.org/10.1109/ICSME52107.2021.00039
https://doi.org/10.1109/TSE.2022.3194640

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 AI-Enabled CPS
	2.2 System Specifications

	3 Motivation
	4 SpectAcle
	4.1 Test Suite Execution
	4.2 Forward Impact Calculation
	4.3 Execution Spectrum Construction
	4.4 Suspiciousness Score Calculation

	5 Experiment Setup
	5.1 Research Questions (RQ)
	5.2 Benchmarks
	5.3 Compared Approaches
	5.4 Evaluation Metrics
	5.5 Software and Hardware Specifications

	6 Experimental Evaluation
	6.1 Answer to RQ1
	6.2 Answer to RQ2
	6.3 Answer to RQ3
	6.4 Answer to RQ4
	6.5 Answer to RQ5
	6.6 Answer to RQ6

	7 Threats to validity
	7.1 Construct Validity
	7.2 Conclusion Validity
	7.3 Internal Validity
	7.4 External Validity

	8 Related Work
	8.1 DNN Fault Localisation
	8.2 Fault Localisation of Classic CPSs

	9 Conclusion and Future Work
	References

